These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 15912002)

  • 1. An injectable porous poly(propylene glycol-co-fumaric acid) bone repair material as an adjunct for intramedullary fixation.
    Hile DD; Kowaleski MP; Doherty SA; Lewandrowski KU; Trantolo DJ
    Biomed Mater Eng; 2005; 15(3):219-27. PubMed ID: 15912002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimensional stability of the alveolar ridge after implantation of a bioabsorbable bone graft substitute: a radiographic and histomorphometric study in rats.
    Hile DD; Sonis ST; Doherty SA; Tian X; Zhang Q; Jee WS; Trantolo DJ
    J Oral Implantol; 2005; 31(2):68-76. PubMed ID: 15871525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a porous, biodegradable biopolymer scaffold for mandibular reconstruction.
    Trantolo DJ; Sonis ST; Thompson BM; Wise DL; Lewandrowski KU; Hile DD
    Int J Oral Maxillofac Implants; 2003; 18(2):182-8. PubMed ID: 12705295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmentation of osteoinduction with a biodegradable poly(propylene glycol-co-fumaric acid) bone graft extender. A histologic and histomorphometric study in rats.
    Lewandrowski KU; Bondre S; Gresser JD; Silva AE; Wise DL; Trantolo DJ
    Biomed Mater Eng; 1999; 9(5-6):325-34. PubMed ID: 10822488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical evaluation of a porous bone graft substitute based on poly(propylene glycol-co-fumaric acid).
    Hile DD; Kirker-Head C; Doherty SA; Kowaleski MP; McCool J; Wise DL; Trantolo DJ
    J Biomed Mater Res B Appl Biomater; 2003 Jul; 66(1):311-7. PubMed ID: 12808589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioresorbable bone graft substitutes of different osteoconductivities: a histologic evaluation of osteointegration of poly(propylene glycol-co-fumaric acid)-based cement implants in rats.
    Lewandrowski KU; Gresser JD; Wise DL; Trantol DJ
    Biomaterials; 2000 Apr; 21(8):757-64. PubMed ID: 10721744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing porosity of poly(propylene glycol-co-fumaric acid) bone graft substitutes and the effect on osteointegration: a preliminary histology study in rats.
    Lewandrowski KU; Gresser JD; Bondre S; Silva AE; Wise DL; Trantolo DJ
    J Biomater Sci Polym Ed; 2000; 11(8):879-89. PubMed ID: 11211098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteoconductivity of an injectable and bioresorbable poly(propylene glycol-co-fumaric acid) bone cement.
    Lewandrowski KU; Gresser JD; Wise DL; White RL; Trantolo DJ
    Biomaterials; 2000 Feb; 21(3):293-8. PubMed ID: 10646946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A poly(propylene glycol-co-fumaric acid) based bone graft extender for lumbar spinal fusion: in vivo assessment in a rabbit model.
    Hile DD; Kandziora F; Lewandrowski KU; Doherty SA; Kowaleski MP; Trantolo DJ
    Eur Spine J; 2006 Jun; 15(6):936-43. PubMed ID: 16133085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental model for allograft incorporation and allograft fracture repair.
    Lee FY; Hazan EJ; Gebhardt MC; Mankin HJ
    J Orthop Res; 2000 Mar; 18(2):303-6. PubMed ID: 10815832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous poly(propylene fumarate) foam coating of orthotopic cortical bone grafts for improved osteoconduction.
    Lewandrowski KU; Bondre S; Hile DD; Thompson BM; Wise DL; Tomford WW; Trantolo DJ
    Tissue Eng; 2002 Dec; 8(6):1017-27. PubMed ID: 12542947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative measures of osteoinductivity of a porous poly(propylene fumarate) bone graft extender.
    Lewandrowski KU; Hile DD; Thompson BM; Wise DL; Tomford WW; Trantolo DJ
    Tissue Eng; 2003 Feb; 9(1):85-93. PubMed ID: 12625957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suitability of biodegradable polydioxanone materials for the internal fixation of fractures.
    Papagelopoulos PJ; Giannarakos DG; Lyritis GP
    Orthop Rev; 1993 May; 22(5):585-93. PubMed ID: 8316422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of porous injectable poly-(propylene fumarate)-based bone graft substitute.
    Kim CW; Talac R; Lu L; Moore MJ; Currier BL; Yaszemski MJ
    J Biomed Mater Res A; 2008 Jun; 85(4):1114-9. PubMed ID: 17941027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioresorbable composites prepared by supercritical fluid foaming.
    Mathieu LM; Montjovent MO; Bourban PE; Pioletti DP; Månson JA
    J Biomed Mater Res A; 2005 Oct; 75(1):89-97. PubMed ID: 16037939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction of a new interlocked intramedullary nailing device for stabilization of critically sized femoral defects in the rat: A combined biomechanical and animal experimental study.
    Schoen M; Rotter R; Schattner S; Mittlmeier T; Claes L; Vollmar B; Gradl G
    J Orthop Res; 2008 Feb; 26(2):184-9. PubMed ID: 17868113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering.
    Shi X; Hudson JL; Spicer PP; Tour JM; Krishnamoorti R; Mikos AG
    Biomacromolecules; 2006 Jul; 7(7):2237-42. PubMed ID: 16827593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.
    Mistry AS; Cheng SH; Yeh T; Christenson E; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2009 Apr; 89(1):68-79. PubMed ID: 18428800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peripheral quantitative computed tomography in evaluation of bioactive glass incorporation with bone.
    Välimäki VV; Moritz N; Yrjans JJ; Dalstra M; Aro HT
    Biomaterials; 2005 Nov; 26(33):6693-703. PubMed ID: 15941582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood vessel formation after soft-tissue implantation of hyaluronan-based hydrogel supplemented with copper ions.
    Giavaresi G; Torricelli P; Fornasari PM; Giardino R; Barbucci R; Leone G
    Biomaterials; 2005 Jun; 26(16):3001-8. PubMed ID: 15603795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.