These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62 related articles for article (PubMed ID: 15912002)
21. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. Holland TA; Bodde EW; Baggett LS; Tabata Y; Mikos AG; Jansen JA J Biomed Mater Res A; 2005 Oct; 75(1):156-67. PubMed ID: 16052490 [TBL] [Abstract][Full Text] [Related]
22. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Liao S; Wang W; Uo M; Ohkawa S; Akasaka T; Tamura K; Cui F; Watari F Biomaterials; 2005 Dec; 26(36):7564-71. PubMed ID: 16005963 [TBL] [Abstract][Full Text] [Related]
23. Bone response inside free-form fabricated macroporous hydroxyapatite scaffolds with and without an open microporosity. Malmström J; Adolfsson E; Arvidsson A; Thomsen P Clin Implant Dent Relat Res; 2007 Jun; 9(2):79-88. PubMed ID: 17535331 [TBL] [Abstract][Full Text] [Related]
24. Injectable in situ cross-linkable nanocomposites of biodegradable polymers and carbon nanostructures for bone tissue engineering. Sitharaman B; Shi X; Tran LA; Spicer PP; Rusakova I; Wilson LJ; Mikos AG J Biomater Sci Polym Ed; 2007; 18(6):655-71. PubMed ID: 17623549 [TBL] [Abstract][Full Text] [Related]
25. Bone repair using a new injectable self-crosslinkable bone substitute. Fellah BH; Weiss P; Gauthier O; Rouillon T; Pilet P; Daculsi G; Layrolle P J Orthop Res; 2006 Apr; 24(4):628-35. PubMed ID: 16514642 [TBL] [Abstract][Full Text] [Related]
26. Long-term evaluation of porous poly(epsilon-caprolactone-co-L-lactide) as a bone-filling material. Holmbom J; Södergård A; Ekholm E; Märtson M; Kuusilehto A; Saukko P; Penttinen R J Biomed Mater Res A; 2005 Nov; 75(2):308-15. PubMed ID: 16059893 [TBL] [Abstract][Full Text] [Related]
27. The development and identification of constructing tissue engineered bone by seeding osteoblasts from differentiated rat marrow stromal stem cells onto three-dimensional porous nano-hydroxylapatite bone matrix in vitro. Mao X; Chu CL; Mao Z; Wang JJ Tissue Cell; 2005 Oct; 37(5):349-57. PubMed ID: 16002113 [TBL] [Abstract][Full Text] [Related]
28. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Kim SS; Sun Park M; Jeon O; Yong Choi C; Kim BS Biomaterials; 2006 Mar; 27(8):1399-409. PubMed ID: 16169074 [TBL] [Abstract][Full Text] [Related]
29. Induction of new bone by basic FGF-loaded porous carbonate apatite implants in femur defects in rats. Keiichi K; Mitsunobu K; Masafumi S; Yutaka D; Toshiaki S Clin Oral Implants Res; 2009 Jun; 20(6):560-5. PubMed ID: 19515035 [TBL] [Abstract][Full Text] [Related]
30. Instilled or injected purified natural capsaicin has no adverse effects on rat hindlimb sensory-motor behavior or osteotomy repair. Kramer SM; May JR; Patrick DJ; Chouinard L; Boyer M; Doyle N; Varela A; Smith SY; Longstaff E Anesth Analg; 2009 Jul; 109(1):249-57. PubMed ID: 19535718 [TBL] [Abstract][Full Text] [Related]
31. [Repairing segmental radial bone defect with poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/sol-gel bioactive glass composite porous scaffold]. Yu SJ; Qiu GX; Xin DJ; Chen XF; Zheng YD; Wang YJ Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2005 Apr; 27(2):185-9. PubMed ID: 15960263 [TBL] [Abstract][Full Text] [Related]
32. Bone ingrowth in macroporous Bonelike for orthopaedic applications. Gutierres M; Lopes MA; Sooraj Hussain N; Lemos AF; Ferreira JM; Afonso A; Cabral AT; Almeida L; Santos JD Acta Biomater; 2008 Mar; 4(2):370-7. PubMed ID: 17716960 [TBL] [Abstract][Full Text] [Related]
33. Mechanism of bone incorporation of beta-TCP bone substitute in open wedge tibial osteotomy in patients. Gaasbeek RD; Toonen HG; van Heerwaarden RJ; Buma P Biomaterials; 2005 Nov; 26(33):6713-9. PubMed ID: 15950278 [TBL] [Abstract][Full Text] [Related]
34. Nanomechanical analysis of bone tissue engineering scaffolds. Kaufman JD; Song J; Klapperich CM J Biomed Mater Res A; 2007 Jun; 81(3):611-23. PubMed ID: 17187400 [TBL] [Abstract][Full Text] [Related]
35. Development of a synthetic bone scaffold using porous hydroxyapatite for bone repair. Mustaffa R; Besar I; Andanastuti M Med J Malaysia; 2008 Jul; 63 Suppl A():95-6. PubMed ID: 19025001 [TBL] [Abstract][Full Text] [Related]
36. Four-point bending strength of transverse osteotomies stabilized with various Kirschner wire and tension wire band configurations. Pehlivan O; Kiral A; Mahirogullari M; Koksal O; Kaplan H J Hand Surg Br; 2005 Aug; 30(4):428-31. PubMed ID: 15935530 [TBL] [Abstract][Full Text] [Related]
37. Investigation of a thermoplastic polymeric carrier for bone tissue engineering using allogeneic mesenchymal stem cells in granular scaffolds. Mylonas D; Vidal MD; De Kok IJ; Moriarity JD; Cooper LF J Prosthodont; 2007; 16(6):421-30. PubMed ID: 17683475 [TBL] [Abstract][Full Text] [Related]
38. Enhanced bioactivity of a poly(propylene fumarate) bone graft substitute by augmentation with nano-hydroxyapatite. Lewandrowski KU; Bondre SP; Wise DL; Trantolo DJ Biomed Mater Eng; 2003; 13(2):115-24. PubMed ID: 12775902 [TBL] [Abstract][Full Text] [Related]
39. The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro. Liao S; Watari F; Zhu Y; Uo M; Akasaka T; Wang W; Xu G; Cui F Dent Mater; 2007 Sep; 23(9):1120-8. PubMed ID: 17095082 [TBL] [Abstract][Full Text] [Related]
40. [Bone resection-reconstruction of the diaphyseal zone in animals. Development of an experimental model, application to the study of biomaterials compared with allografts]. Gouin F; Passuti N; Gautier O Chirurgie; 1994-1995; 120(2):80-3. PubMed ID: 7729220 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]