These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 15912004)
1. Biomechanical comparison of newly designed stemless prosthesis and conventional hip prosthesis--an experimental study. Tai CL; Lee MS; Chen WP; Hsieh PH; Lee PC; Shih CH Biomed Mater Eng; 2005; 15(3):239-49. PubMed ID: 15912004 [TBL] [Abstract][Full Text] [Related]
2. Finite element analysis of the cervico-trochanteric stemless femoral prosthesis. Tai CL; Shih CH; Chen WP; Lee SS; Liu YL; Hsieh PH; Chen WJ Clin Biomech (Bristol); 2003 Jul; 18(6):S53-8. PubMed ID: 12828915 [TBL] [Abstract][Full Text] [Related]
3. Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses. Engh CA; O'Connor D; Jasty M; McGovern TF; Bobyn JD; Harris WH Clin Orthop Relat Res; 1992 Dec; (285):13-29. PubMed ID: 1446429 [TBL] [Abstract][Full Text] [Related]
4. Migration and cyclic motion of a new short-stemmed hip prosthesis--a biomechanical in vitro study. Westphal FM; Bishop N; Honl M; Hille E; Püschel K; Morlock MM Clin Biomech (Bristol); 2006 Oct; 21(8):834-40. PubMed ID: 16806616 [TBL] [Abstract][Full Text] [Related]
5. Changes in strain distribution of loaded proximal femora caused by different types of cementless femoral stems. Decking R; Puhl W; Simon U; Claes LE Clin Biomech (Bristol); 2006 Jun; 21(5):495-501. PubMed ID: 16457913 [TBL] [Abstract][Full Text] [Related]
6. Biomechanical evaluation of two types of short-stemmed hip prostheses compared to the trust plate prosthesis by three-dimensional measurement of micromotions. Fottner A; Schmid M; Birkenmaier C; Mazoochian F; Plitz W; Volkmar J Clin Biomech (Bristol); 2009 Jun; 24(5):429-34. PubMed ID: 19307048 [TBL] [Abstract][Full Text] [Related]
7. New concepts -- biomechanical studies of a newly designed femoral prosthesis (cervico-trochanter prosthesis). Shih CH; Chen WP; Tai CL; Kuo RF; Wu CC; Chen CH Clin Biomech (Bristol); 1997 Oct; 12(7-8):482-490. PubMed ID: 11415758 [TBL] [Abstract][Full Text] [Related]
8. Comparison of different hip prosthesis shapes considering micro-level bone remodeling and stress-shielding criteria using three-dimensional design space topology optimization. Boyle C; Kim IY J Biomech; 2011 Jun; 44(9):1722-8. PubMed ID: 21497816 [TBL] [Abstract][Full Text] [Related]
9. Effect of distal stem geometry on interface motion in uncemented revision total hip prostheses. Kirk KL; Potter BK; Lehman RA; Xenos JS Am J Orthop (Belle Mead NJ); 2007 Oct; 36(10):545-9. PubMed ID: 18033566 [TBL] [Abstract][Full Text] [Related]
10. Comparison of periprosthetic bone remodelling after implantation of anatomic and straight stem prostheses in total hip arthroplasty. Grochola LF; Habermann B; Mastrodomenico N; Kurth A Arch Orthop Trauma Surg; 2008 Apr; 128(4):383-92. PubMed ID: 18038142 [TBL] [Abstract][Full Text] [Related]
11. Strain shielding in proximal tibia of stemmed knee prosthesis: experimental study. Completo A; Fonseca F; Simões JA J Biomech; 2008; 41(3):560-6. PubMed ID: 18036530 [TBL] [Abstract][Full Text] [Related]
12. Biomechanical evaluation of screw-in femoral implant in cementless total hip system. Kim JY; Hayashi K; Garcia TC; Kim SY; Entwistle R; Kapatkin AS; Stover SM Vet Surg; 2012 Jan; 41(1):94-102. PubMed ID: 22092256 [TBL] [Abstract][Full Text] [Related]
13. Cement mantle stress under retroversion torque at heel-strike. Afsharpoya B; Barton DC; Fisher J; Purbach B; Wroblewski M; Stewart TD Med Eng Phys; 2009 Dec; 31(10):1323-30. PubMed ID: 19879794 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical evaluation of different offset versions of a cementless hip prosthesis by 3-dimensional measurement of micromotions. Fottner A; Peter CV; Schmidutz F; Wanke-Jellinek L; Schröder C; Mazoochian F; Jansson V Clin Biomech (Bristol); 2011 Oct; 26(8):830-5. PubMed ID: 21536357 [TBL] [Abstract][Full Text] [Related]
15. A novel locking screw hip stem to achieve immediate stability in total hip arthroplasty: A biomechanical study. Grechenig S; Gueorguiev B; Berner A; Heiss P; Müller M; Nerlich M; Schmitz P Injury; 2015 Oct; 46 Suppl 4():S83-7. PubMed ID: 26542871 [TBL] [Abstract][Full Text] [Related]
16. The effect of femoral prosthesis design on cement strain in cemented total hip arthroplasty. Peters CL; Bachus KN; Craig MA; Higginbotham TO J Arthroplasty; 2001 Feb; 16(2):216-24. PubMed ID: 11222897 [TBL] [Abstract][Full Text] [Related]
17. Finite element modeling of resurfacing hip prosthesis: estimation of accuracy through experimental validation. Taddei F; Martelli S; Gill HS; Cristofolini L; Viceconti M J Biomech Eng; 2010 Feb; 132(2):021002. PubMed ID: 20370239 [TBL] [Abstract][Full Text] [Related]
18. An in vitro comparison of surface strain patterns in cementless femoral arthroplasty. Boggan RS Semin Arthroplasty; 1993 Jul; 4(3):143-53. PubMed ID: 10146280 [TBL] [Abstract][Full Text] [Related]
19. [Biomechanical experiment of non-stemmed anatomical total hip prosthesis arthroplasty in vitro]. Fei Q; Hong S; Chen T; Chen Z; Qian B Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Feb; 22(1):104-7. PubMed ID: 15762127 [TBL] [Abstract][Full Text] [Related]
20. The ABG II hip system implantation technique. Nourissat C; Adrey J; Berteaux D; Goalard C; Walter W Surg Technol Int; 2002 Sep; 10():205-11. PubMed ID: 12384883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]