These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 15912241)
1. Raman spectroscopic analysis of cyanobacterial gypsum halotrophs and relevance for sulfate deposits on Mars. Edwards HG; Villar SE; Parnell J; Cockell CS; Lee P Analyst; 2005 Jun; 130(6):917-23. PubMed ID: 15912241 [TBL] [Abstract][Full Text] [Related]
2. Life in the sabkha: Raman spectroscopy of halotrophic extremophiles of relevance to planetary exploration. Edwards HG; Mohsin MA; Sadooni FN; Nik Hassan NF; Munshi T Anal Bioanal Chem; 2006 May; 385(1):46-56. PubMed ID: 16607492 [TBL] [Abstract][Full Text] [Related]
3. Identification of beta-carotene in an evaporitic matrix--evaluation of Raman spectroscopic analysis for astrobiological research on Mars. Vítek P; Jehlicka J; Edwards HG; Osterrothová K Anal Bioanal Chem; 2009 Apr; 393(8):1967-75. PubMed ID: 19296093 [TBL] [Abstract][Full Text] [Related]
4. Raman spectroscopic identification of usnic acid in hydrothermal minerals as a potential Martian analogue. Osterrothová K; Jehlicka J Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):576-80. PubMed ID: 18980859 [TBL] [Abstract][Full Text] [Related]
5. Raman spectroscopic analysis of arctic nodules: relevance to the astrobiological exploration of Mars. Jorge-Villar SE; Edwards HG; Benning LG; Anal Bioanal Chem; 2011 Nov; 401(9):2927-33. PubMed ID: 21938598 [TBL] [Abstract][Full Text] [Related]
6. The Rio Tinto Mars analogue site: an extremophilic Raman spectroscopic study. Edwards HG; Vandenabeele P; Jorge-Villar SE; Carter EA; Perez FR; Hargreaves MD Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1133-7. PubMed ID: 17600759 [TBL] [Abstract][Full Text] [Related]
7. Ab initio calculations of scytonemin derivatives of relevance to extremophile characterization by Raman spectroscopy. Varnali T; Edwards HG Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1922):3193-203. PubMed ID: 20529954 [TBL] [Abstract][Full Text] [Related]
8. UV Raman imaging--a promising tool for astrobiology: comparative Raman studies with different excitation wavelengths on SNC Martian meteorites. Frosch T; Tarcea N; Schmitt M; Thiele H; Langenhorst F; Popp J Anal Chem; 2007 Feb; 79(3):1101-8. PubMed ID: 17263342 [TBL] [Abstract][Full Text] [Related]
9. Raman spectroscopic identification of phthalic and mellitic acids in mineral matrices. Osterrothová K; Jehlička J Spectrochim Acta A Mol Biomol Spectrosc; 2010 Dec; 77(5):1092-8. PubMed ID: 20870453 [TBL] [Abstract][Full Text] [Related]
10. Reduced and oxidised scytonemin: theoretical protocol for Raman spectroscopic identification of potential key biomolecules for astrobiology. Varnali T; Edwards HG Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 117():72-7. PubMed ID: 23981417 [TBL] [Abstract][Full Text] [Related]
11. Gypsum-permineralized microfossils and their relevance to the search for life on Mars. Schopf JW; Farmer JD; Foster IS; Kudryavtsev AB; Gallardo VA; Espinoza C Astrobiology; 2012 Jul; 12(7):619-33. PubMed ID: 22794252 [TBL] [Abstract][Full Text] [Related]
12. The microbe-mineral environment and gypsum neogenesis in a weathered polar evaporite. Cockell CS; Osinski GR; Banerjee NR; Howard KT; Gilmour I; Watson JS Geobiology; 2010 Sep; 8(4):293-308. PubMed ID: 20456500 [TBL] [Abstract][Full Text] [Related]
13. Scytonin in gypsum endolithic colonisation: First Raman spectroscopic detection of a new spectral biosignature for terrestrial astrobiological analogues and for exobiological mission database extension. G M Edwards H; Jehlička J; Němečková K; Culka A Spectrochim Acta A Mol Biomol Spectrosc; 2023 May; 292():122406. PubMed ID: 36738580 [TBL] [Abstract][Full Text] [Related]
14. Challenges Analyzing Gypsum on Mars by Raman Spectroscopy. Marshall CP; Olcott Marshall A Astrobiology; 2015 Sep; 15(9):761-9. PubMed ID: 26317670 [TBL] [Abstract][Full Text] [Related]
15. FT-Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals. Edwards HG; Villar SE; Jehlicka J; Munshi T Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2273-80. PubMed ID: 16029849 [TBL] [Abstract][Full Text] [Related]
16. Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars. Wierzchos J; Cámara B; de Los Ríos A; Davila AF; Sánchez Almazo IM; Artieda O; Wierzchos K; Gómez-Silva B; McKay C; Ascaso C Geobiology; 2011 Jan; 9(1):44-60. PubMed ID: 20726901 [TBL] [Abstract][Full Text] [Related]
17. Raman spectra of biomarkers of relevance to analytical astrobiological exploration: hopanoids, sterols and steranes. Edwards HG; Herschy B; Page K; Munshi T; Scowen IJ Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):191-5. PubMed ID: 21050806 [TBL] [Abstract][Full Text] [Related]
18. Interrelationships in the Gypsum-Syngenite-Görgeyite System and Their Possible Formation on Mars. García-Florentino C; Gomez-Nubla L; Huidobro J; Torre-Fdez I; Ruíz-Galende P; Aramendia J; Hausrath EM; Castro K; Arana G; Madariaga JM Astrobiology; 2021 Mar; 21(3):332-344. PubMed ID: 33481644 [TBL] [Abstract][Full Text] [Related]
19. Raman spectroscopic analysis of minerals and organic molecules of relevance to astrobiology. Alajtal AI; Edwards HGM; Scowen IJ Anal Bioanal Chem; 2010 May; 397(1):215-221. PubMed ID: 20020110 [TBL] [Abstract][Full Text] [Related]
20. Testing a portable Raman instrument: the detection of biomarkers in gypsum powdered matrix under gypsum crystals. Culka A; Jehlička J; Strnad L Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 86():347-50. PubMed ID: 22100732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]