These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 15912249)
1. Optimisation of sorbent trapping and thermal desorption-gas chromatography-mass spectrometric conditions for sampling and analysis of hydrogen cyanide in air. Juillet Y; Le Moullec S; Bégos A; Bellier B Analyst; 2005 Jun; 130(6):977-82. PubMed ID: 15912249 [TBL] [Abstract][Full Text] [Related]
2. Multisorbent tubes for collecting volatile organic compounds in spacecraft air. Matney ML; Beck SW; Limero TF; James JT AIHAJ; 2000; 61(1):69-75. PubMed ID: 10772617 [TBL] [Abstract][Full Text] [Related]
3. Gas chromatography-full scan mass spectrometry determination of traces of chemical warfare agents and their impurities in air samples by inlet based thermal desorption of sorbent tubes. Terzic O; Swahn I; Cretu G; Palit M; Mallard G J Chromatogr A; 2012 Feb; 1225():182-92. PubMed ID: 22251886 [TBL] [Abstract][Full Text] [Related]
4. Analysis of hydrogen cyanide in air in a case of attempted cyanide poisoning. Magnusson R; Nyholm S; Åstot C Forensic Sci Int; 2012 Oct; 222(1-3):e7-e12. PubMed ID: 22704552 [TBL] [Abstract][Full Text] [Related]
5. Determination of volatile organic compounds in workplace air by multisorbent adsorption/thermal desorption-GC/MS. Wu CH; Feng CT; Lo YS; Lin TY; Lo JG Chemosphere; 2004 Jul; 56(1):71-80. PubMed ID: 15109881 [TBL] [Abstract][Full Text] [Related]
6. Mass spectral analysis of synthones of nerve agents for verification of the Chemical Weapons Convention. Gupta AK; Shakya PD; Pardasani D; Palit M; Dubey DK Rapid Commun Mass Spectrom; 2005; 19(8):975-83. PubMed ID: 15759308 [TBL] [Abstract][Full Text] [Related]
7. Dynamic solid phase microextraction for sampling of airborne sarin with gas chromatography-mass spectrometry for rapid field detection and quantification. Hook GL; Jackson Lepage C; Miller SI; Smith PA J Sep Sci; 2004 Aug; 27(12):1017-22. PubMed ID: 15352721 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous determination of airborne carbonyls and aromatic hydrocarbons using mixed sorbent collection and thermal desorption-gas chromatography/mass spectrometric analysis. Chien YC; Yin KG J Environ Monit; 2009 May; 11(5):1013-9. PubMed ID: 19436859 [TBL] [Abstract][Full Text] [Related]
9. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2. Sorbent selection and other aspects of optimizing air monitoring methods. Woolfenden E J Chromatogr A; 2010 Apr; 1217(16):2685-94. PubMed ID: 20106482 [TBL] [Abstract][Full Text] [Related]
10. Measurement of breakthrough volumes of volatile chemical warfare agents on a poly(2,6-diphenylphenylene oxide)-based adsorbent and application to thermal desorption-gas chromatography/mass spectrometric analysis. Kanamori-Kataoka M; Seto Y J Chromatogr A; 2015 Sep; 1410():19-27. PubMed ID: 26239699 [TBL] [Abstract][Full Text] [Related]
11. Determination of volatile organic compounds in different microenvironments by multibed adsorption and short-path thermal desorption followed by gas chromatographic-mass spectrometric analysis. Kuntasal OO; Karman D; Wang D; Tuncel SG; Tuncel G J Chromatogr A; 2005 Dec; 1099(1-2):43-54. PubMed ID: 16330271 [TBL] [Abstract][Full Text] [Related]
12. The combined use of thermal desorption and selected ion flow tube mass spectrometry for the quantification of xylene and toluene in air. Ross BM; Vermeulen N Rapid Commun Mass Spectrom; 2007; 21(22):3608-12. PubMed ID: 17939161 [TBL] [Abstract][Full Text] [Related]
13. Development and validation of personal monitoring methods for low levels of acrylonitrile in workplace atmosphere: II. Thermal desorption and field validation. Borders RA; Gluck SJ; Sowle WF; Melcher RG Am Ind Hyg Assoc J; 1986 Mar; 47(3):158-63. PubMed ID: 3706141 [TBL] [Abstract][Full Text] [Related]
14. Development of a sensitive thermal desorption method for the determination of trihalomethanes in humid ambient and alveolar air. Caro J; Gallego M Talanta; 2008 Aug; 76(4):847-53. PubMed ID: 18656668 [TBL] [Abstract][Full Text] [Related]
15. Screening of degradation products, impurities and precursors of chemical warfare agents in water and wet or dry organic liquid samples by in-sorbent tube silylation followed by thermal desorption-gas chromatography-mass spectrometry. Terzic O J Chromatogr A; 2010 Jul; 1217(30):4987-95. PubMed ID: 20541765 [TBL] [Abstract][Full Text] [Related]
16. Hollow fiber-mediated liquid-phase microextraction of chemical warfare agents from water. Dubey DK; Pardasani D; Gupta AK; Palit M; Kanaujia PK; Tak V J Chromatogr A; 2006 Feb; 1107(1-2):29-35. PubMed ID: 16427062 [TBL] [Abstract][Full Text] [Related]
17. Development of a method for the determination of naphthalene and phenanthrene in workplace air using diffusive sampling and thermal desorption GC-MS analysis. Lindahl R; Claesson AS; Khan MA; Levin JO Ann Occup Hyg; 2011 Jul; 55(6):681-7. PubMed ID: 21742628 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of sorbent materials for the sampling and analysis of phosphine, sulfuryl fluoride and methyl bromide in air. Magnusson R; Rittfeldt L; Åstot C J Chromatogr A; 2015 Jan; 1375():17-26. PubMed ID: 25512126 [TBL] [Abstract][Full Text] [Related]
19. A New Method for Workplace Monitoring of Airborne Diacetyl and 2,3-Pentanedione Using Thermal Desorption Tubes and Gas Chromatography-Mass Spectrometry. Pengelly I; Brown VM Ann Work Expo Health; 2019 Apr; 63(4):407-414. PubMed ID: 30893441 [TBL] [Abstract][Full Text] [Related]
20. Development and validation of a sensitive thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method for the determination of phosgene in air samples. Juillet Y; Dubois C; Bintein F; Dissard J; Bossée A Anal Bioanal Chem; 2014 Aug; 406(21):5137-45. PubMed ID: 24817348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]