These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 1591245)

  • 1. Fluorescence resonance energy transfer analysis of the structure of the four-way DNA junction.
    Clegg RM; Murchie AI; Zechel A; Carlberg C; Diekmann S; Lilley DM
    Biochemistry; 1992 May; 31(20):4846-56. PubMed ID: 1591245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The four-way DNA junction: a fluorescence resonance energy transfer study.
    Clegg RM; Murchie AI; Lilley DM
    Braz J Med Biol Res; 1993 Apr; 26(4):405-16. PubMed ID: 8298513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The solution structure of the four-way DNA junction at low-salt conditions: a fluorescence resonance energy transfer analysis.
    Clegg RM; Murchie AI; Lilley DM
    Biophys J; 1994 Jan; 66(1):99-109. PubMed ID: 8130350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational distributions of a four-way DNA junction revealed by time-resolved fluorescence resonance energy transfer.
    Eis PS; Millar DP
    Biochemistry; 1993 Dec; 32(50):13852-60. PubMed ID: 8268160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global structure of three-way DNA junctions with and without additional unpaired bases: a fluorescence resonance energy transfer analysis.
    Stühmeier F; Welch JB; Murchie AI; Lilley DM; Clegg RM
    Biochemistry; 1997 Nov; 36(44):13530-8. PubMed ID: 9354621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational flexibility of three-way DNA junctions containing unpaired nucleotides.
    Yang M; Millar DP
    Biochemistry; 1996 Jun; 35(24):7959-67. PubMed ID: 8672499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Helix-coil transition of a four-way DNA junction observed by multiple fluorescence parameters.
    Vámosi G; Clegg RM
    J Phys Chem B; 2008 Oct; 112(41):13136-48. PubMed ID: 18811195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data.
    Dietrich A; Buschmann V; Müller C; Sauer M
    J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence energy transfer analysis of DNA structures containing several bulges and their interaction with CAP.
    Stühmeier F; Hillisch A; Clegg RM; Diekman S
    J Mol Biol; 2000 Oct; 302(5):1081-100. PubMed ID: 11183776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA curvature in solution measured by fluorescence resonance energy transfer.
    Tóth K; Sauermann V; Langowski J
    Biochemistry; 1998 Jun; 37(22):8173-9. PubMed ID: 9609713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of helical junctions in nucleic acids.
    Lilley DM
    Q Rev Biophys; 2000 May; 33(2):109-59. PubMed ID: 11131562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer.
    Clegg RM; Murchie AI; Zechel A; Lilley DM
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2994-8. PubMed ID: 8464916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The estimation of distances between specific backbone-labeled sites in DNA using fluorescence resonance energy transfer.
    Ozaki H; McLaughlin LW
    Nucleic Acids Res; 1992 Oct; 20(19):5205-14. PubMed ID: 1408835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and activity of the hairpin ribozyme in its natural junction conformation: effect of metal ions.
    Walter F; Murchie AI; Thomson JB; Lilley DM
    Biochemistry; 1998 Oct; 37(40):14195-203. PubMed ID: 9760257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinking of DNA and RNA helices by bulged nucleotides observed by fluorescence resonance energy transfer.
    Gohlke C; Murchie AI; Lilley DM; Clegg RM
    Proc Natl Acad Sci U S A; 1994 Nov; 91(24):11660-4. PubMed ID: 7526401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of interactions between structured nucleic acids by fluorescence resonance energy transfer (FRET): selection of target sites for functional nucleic acids.
    Ota N; Hirano K; Warashina M; Andrus A; Mullah B; Hatanaka K; Taira K
    Nucleic Acids Res; 1998 Feb; 26(3):735-43. PubMed ID: 9443965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of DNA helical handedness by fluorescence resonance energy transfer.
    Jares-Erijman EA; Jovin TM
    J Mol Biol; 1996 Apr; 257(3):597-617. PubMed ID: 8648627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Location of cyanine-3 on double-stranded DNA: importance for fluorescence resonance energy transfer studies.
    Norman DG; Grainger RJ; Uhrín D; Lilley DM
    Biochemistry; 2000 May; 39(21):6317-24. PubMed ID: 10828944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic characterization of fluorescein- and tetramethylrhodamine-labeled oligonucleotides and their complexes with a DNA template.
    Wang L; Gaigalas AK; Blasic J; Holden MJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Oct; 60(12):2741-50. PubMed ID: 15350908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence energy transfer as a probe for tetraplex formation: the i-motif.
    Mergny JL
    Biochemistry; 1999 Feb; 38(5):1573-81. PubMed ID: 9931024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.