BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 15912502)

  • 1. Disruption of synaptic development and ultrastructure by Drosophila NSF2 alleles.
    Stewart BA; Pearce J; Bajec M; Khorana R
    J Comp Neurol; 2005 Jul; 488(1):101-11. PubMed ID: 15912502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dominant-negative NSF2 disrupts the structure and function of Drosophila neuromuscular synapses.
    Stewart BA; Mohtashami M; Rivlin P; Deitcher DL; Trimble WS; Boulianne GL
    J Neurobiol; 2002 Jun; 51(4):261-71. PubMed ID: 12150502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genetic screen for suppressors of Drosophila NSF2 neuromuscular junction overgrowth.
    Laviolette MJ; Nunes P; Peyre JB; Aigaki T; Stewart BA
    Genetics; 2005 Jun; 170(2):779-92. PubMed ID: 15834148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of cytoskeleton genes with NSF2-induced neuromuscular junction overgrowth.
    Peyre JB; Seabrooke S; Randlett O; Kisiel M; Aigaki T; Stewart BA
    Genesis; 2006 Dec; 44(12):595-600. PubMed ID: 17139674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Moesin helps to restrain synaptic growth at the Drosophila neuromuscular junction.
    Seabrooke S; Stewart BA
    Dev Neurobiol; 2008 Feb; 68(3):379-91. PubMed ID: 18161855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drosophila synaptotagmin I null mutants show severe alterations in vesicle populations but calcium-binding motif mutants do not.
    Loewen CA; Royer SM; Reist NE
    J Comp Neurol; 2006 May; 496(1):1-12. PubMed ID: 16528727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions.
    Verstreken P; Ly CV; Venken KJ; Koh TW; Zhou Y; Bellen HJ
    Neuron; 2005 Aug; 47(3):365-78. PubMed ID: 16055061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic vesicle mobility and presynaptic F-actin are disrupted in a N-ethylmaleimide-sensitive factor allele of Drosophila.
    Nunes P; Haines N; Kuppuswamy V; Fleet DJ; Stewart BA
    Mol Biol Cell; 2006 Nov; 17(11):4709-19. PubMed ID: 16914524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic modifiers of comatose mutations in Drosophila: insights into neuronal NSF (N-ethylmaleimide-sensitive fusion factor) functions.
    Sanyal S; Krishnan KS
    J Neurogenet; 2012 Sep; 26(3-4):348-59. PubMed ID: 22817636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological and functional effects of altered cysteine string protein at the Drosophila larval neuromuscular junction.
    Dawson-Scully K; Lin Y; Imad M; Zhang J; Marin L; Horne JA; Meinertzhagen IA; Karunanithi S; Zinsmaier KE; Atwood HL
    Synapse; 2007 Jan; 61(1):1-16. PubMed ID: 17068777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic development: insights from Drosophila.
    Collins CA; DiAntonio A
    Curr Opin Neurobiol; 2007 Feb; 17(1):35-42. PubMed ID: 17229568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic interaction between shibire and comatose mutations in Drosophila suggest a role for snap-receptor complex assembly and disassembly for maintenance of synaptic vesicle cycling.
    Sanyal S; Tolar LA; Pallanck L; Krishnan KS
    Neurosci Lett; 2001 Sep; 311(1):21-4. PubMed ID: 11585558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rab3a deletion reduces vesicle docking and transmitter release at the mouse diaphragm synapse.
    Coleman WL; Bill CA; Bykhovskaia M
    Neuroscience; 2007 Aug; 148(1):1-6. PubMed ID: 17640821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flies lacking all synapsins are unexpectedly healthy but are impaired in complex behaviour.
    Godenschwege TA; Reisch D; Diegelmann S; Eberle K; Funk N; Heisenberg M; Hoppe V; Hoppe J; Klagges BR; Martin JR; Nikitina EA; Putz G; Reifegerste R; Reisch N; Rister J; Schaupp M; Scholz H; Schwärzel M; Werner U; Zars TD; Buchner S; Buchner E
    Eur J Neurosci; 2004 Aug; 20(3):611-22. PubMed ID: 15255973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A semi-correlative technique for the subcellular localization of proteins in Drosophila synapses.
    Jiao W; Shupliakov A; Shupliakov O
    J Neurosci Methods; 2010 Jan; 185(2):273-9. PubMed ID: 19850080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic analysis of soluble N-ethylmaleimide-sensitive factor attachment protein function in Drosophila reveals positive and negative secretory roles.
    Babcock M; Macleod GT; Leither J; Pallanck L
    J Neurosci; 2004 Apr; 24(16):3964-73. PubMed ID: 15102912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased synaptic microtubules and altered synapse development in Drosophila sec8 mutants.
    Liebl FL; Chen K; Karr J; Sheng Q; Featherstone DE
    BMC Biol; 2005 Dec; 3():27. PubMed ID: 16351720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic physiology and ultrastructure in comatose mutants define an in vivo role for NSF in neurotransmitter release.
    Kawasaki F; Mattiuz AM; Ordway RW
    J Neurosci; 1998 Dec; 18(24):10241-9. PubMed ID: 9852561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dap160/intersectin acts as a stabilizing scaffold required for synaptic development and vesicle endocytosis.
    Koh TW; Verstreken P; Bellen HJ
    Neuron; 2004 Jul; 43(2):193-205. PubMed ID: 15260956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional correlates of synaptic transmission in the vertebrate neuromuscular junction.
    Rash JE; Walrond JP; Morita M
    J Electron Microsc Tech; 1988 Oct; 10(2):153-85. PubMed ID: 2852716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.