BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 15912551)

  • 1. Structure and redox properties of the haem centre in the C357M mutant of cytochrome P450cam.
    Murugan R; Mazumdar S
    Chembiochem; 2005 Jul; 6(7):1204-11. PubMed ID: 15912551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of threonine 101 on the stability of the heme active site of cytochrome P450cam: multiwavelength circular dichroism studies.
    Manna SK; Mazumdar S
    Biochemistry; 2006 Oct; 45(42):12715-22. PubMed ID: 17042489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering cytochrome c peroxidase into cytochrome P450: a proximal effect on heme-thiolate ligation.
    Sigman JA; Pond AE; Dawson JH; Lu Y
    Biochemistry; 1999 Aug; 38(34):11122-9. PubMed ID: 10460168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and synthesis of de novo cytochromes c.
    Ishida M; Dohmae N; Shiro Y; Oku T; Iizuka T; Isogai Y
    Biochemistry; 2004 Aug; 43(30):9823-33. PubMed ID: 15274636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam.
    Bell SG; Chen X; Sowden RJ; Xu F; Williams JN; Wong LL; Rao Z
    J Am Chem Soc; 2003 Jan; 125(3):705-14. PubMed ID: 12526670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic characterization of the redox centres in a representative domain of a novel c-type multihaem cytochrome.
    Morgado L; Fernandes AP; Londer YY; Pokkuluri PR; Schiffer M; Salgueiro CA
    Biochem J; 2009 May; 420(3):485-92. PubMed ID: 19351328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochrome b5 reductase: role of the si-face residues, proline 92 and tyrosine 93, in structure and catalysis.
    Marohnic CC; Crowley LJ; Davis CA; Smith ET; Barber MJ
    Biochemistry; 2005 Feb; 44(7):2449-61. PubMed ID: 15709757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of substrate on the spectral properties of oxyferrous wild-type and T252A cytochrome P450-CAM.
    Sono M; Perera R; Jin S; Makris TM; Sligar SG; Bryson TA; Dawson JH
    Arch Biochem Biophys; 2005 Apr; 436(1):40-9. PubMed ID: 15752707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryoreduction EPR and 13C, 19F ENDOR study of substrate-bound substates and solvent kinetic isotope effects in the catalytic cycle of cytochrome P450cam and its T252A mutant.
    Kim SH; Yang TC; Perera R; Jin S; Bryson TA; Sono M; Davydov R; Dawson JH; Hoffman BM
    Dalton Trans; 2005 Nov; (21):3464-9. PubMed ID: 16234926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of two surface residues near the access channel in the substrate recognition by cytochrome P450cam.
    Behera RK; Mazumdar S
    Biophys Chem; 2008 Jun; 135(1-3):1-6. PubMed ID: 18395959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Electron-conformational interactions at the active site of reduced bacterial cytochrome P450cam induced by a substrate and analysis of the electron structure of heme].
    Sharonov IuA
    Mol Biol (Mosk); 1992; 26(6):1251-62. PubMed ID: 1491671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-activity correlations in pentachlorobenzene oxidation by engineered cytochrome P450cam.
    Xu F; Bell SG; Rao Z; Wong LL
    Protein Eng Des Sel; 2007 Oct; 20(10):473-80. PubMed ID: 17962225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategic roles of axial histidines in structure formation and redox regulation of tetraheme cytochrome c3.
    Takayama Y; Werbeck ND; Komori H; Morita K; Ozawa K; Higuchi Y; Akutsu H
    Biochemistry; 2008 Sep; 47(36):9405-15. PubMed ID: 18702516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role of the heme-7-propionate side chain in cytochrome P450cam as a gate for regulating the access of water molecules to the substrate-binding site.
    Hayashi T; Harada K; Sakurai K; Shimada H; Hirota S
    J Am Chem Soc; 2009 Feb; 131(4):1398-400. PubMed ID: 19133773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional characterization of "laboratory evolved" cytochrome P450cam mutants showing enhanced naphthalene oxygenation activity.
    Matsuura K; Tosha T; Yoshioka S; Takahashi S; Ishimori K; Morishima I
    Biochem Biophys Res Commun; 2004 Oct; 323(4):1209-15. PubMed ID: 15451425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural evidence for a functionally relevant second camphor binding site in P450cam: model for substrate entry into a P450 active site.
    Yao H; McCullough CR; Costache AD; Pullela PK; Sem DS
    Proteins; 2007 Oct; 69(1):125-38. PubMed ID: 17598143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bis-methionine axial ligation of haem in bacterioferritin from Pseudomonas aeruginosa.
    Cheesman MR; Thomson AJ; Greenwood C; Moore GR; Kadir F
    Nature; 1990 Aug; 346(6286):771-3. PubMed ID: 2167456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of alcohols on binding of camphor to cytochrome P450cam: spectroscopic and stopped flow transient kinetic studies.
    Murugan R; Mazumdar S
    Arch Biochem Biophys; 2006 Nov; 455(2):154-62. PubMed ID: 17049478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for the network of functional cooperativities in cytochrome c(3) from Desulfovibrio gigas: solution structures of the oxidised and reduced states.
    Brennan L; Turner DL; Messias AC; Teodoro ML; LeGall J; Santos H; Xavier AV
    J Mol Biol; 2000 Apr; 298(1):61-82. PubMed ID: 10756105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.