These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 15912583)

  • 1. Development of feedforward receptive field structure of a simple cell and its contribution to the orientation selectivity: a modeling study.
    Garg AR; Obermayer K; Bhaumik B
    Int J Neural Syst; 2005; 15(1-2):55-70. PubMed ID: 15912583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constraint on the number of synaptic inputs to a visual cortical neuron controls receptive field formation.
    Tanaka S; Miyashita M
    Neural Comput; 2009 Sep; 21(9):2554-80. PubMed ID: 19548800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Receptive field properties of near neighbor orientation selective neurons in the visual cortex: a modeling study.
    Bhaumik B; Agarwal A; Manohar M
    Int J Neural Syst; 2005; 15(1-2):31-40. PubMed ID: 15912581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cooperation and competition based simple cell receptive field model and study of feed-forward linear and nonlinear contributions to orientation selectivity.
    Bhaumik B; Mathur M
    J Comput Neurosci; 2003; 14(2):211-27. PubMed ID: 12567018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity. Experiments and models.
    Suder K; Funke K; Zhao Y; Kerscher N; Wennekers T; Wörgötter F
    Exp Brain Res; 2002 Jun; 144(4):430-44. PubMed ID: 12037629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. V1 orientation plasticity is explained by broadly tuned feedforward inputs and intracortical sharpening.
    Teich AF; Qian N
    Vis Neurosci; 2010 Mar; 27(1-2):57-73. PubMed ID: 20394682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional cell classes and functional architecture in the early visual system of a highly visual rodent.
    Van Hooser SD; Heimel JA; Nelson SB
    Prog Brain Res; 2005; 149():127-45. PubMed ID: 16226581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Mechanisms of orientation selectivity of simple and complex neurons in the visual cortex and a model of the orientation-selective receptive field].
    Supin AIa
    Usp Fiziol Nauk; 1984; 15(4):23-45. PubMed ID: 6095554
    [No Abstract]   [Full Text] [Related]  

  • 9. Activity-dependent regulation of receptive field properties of cat area 17 by supervised Hebbian learning.
    Frégnac Y; Shulz DE
    J Neurobiol; 1999 Oct; 41(1):69-82. PubMed ID: 10504194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple fall-off pattern of correlated neural activity in the developing lateral geniculate nucleus.
    Ohshiro T; Weliky M
    Nat Neurosci; 2006 Dec; 9(12):1541-8. PubMed ID: 17115045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling LGN responses during free-viewing: a possible role of microscopic eye movements in the refinement of cortical orientation selectivity.
    Rucci M; Edelman GM; Wray J
    J Neurosci; 2000 Jun; 20(12):4708-20. PubMed ID: 10844040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric synaptic depression in cortical networks.
    Chelaru MI; Dragoi V
    Cereb Cortex; 2008 Apr; 18(4):771-88. PubMed ID: 17693394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergent spatial synaptic structure from diffusive plasticity.
    Sweeney Y; Clopath C
    Eur J Neurosci; 2017 Apr; 45(8):1057-1067. PubMed ID: 27206794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Squirrel visual cortex neurons selective for contour orientation].
    Supin AIa; Polkoshnikov EV
    Neirofiziologiia; 1979; 11(6):540-9. PubMed ID: 514413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural mechanisms of orientation selectivity in the visual cortex.
    Ferster D; Miller KD
    Annu Rev Neurosci; 2000; 23():441-71. PubMed ID: 10845071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneously emerging direction selectivity maps in visual cortex through STDP.
    Wenisch OG; Noll J; Hemmen JL
    Biol Cybern; 2005 Oct; 93(4):239-47. PubMed ID: 16195915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple cell model with dominating opponent inhibition for robust image processing.
    Hansen T; Neumann H
    Neural Netw; 2004; 17(5-6):647-62. PubMed ID: 15288890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origins of feature selectivities and maps in the mammalian primary visual cortex.
    Vidyasagar TR; Eysel UT
    Trends Neurosci; 2015 Aug; 38(8):475-85. PubMed ID: 26209463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bottom-up and top-down dynamics in visual cortex.
    Schummers J; Sharma J; Sur M
    Prog Brain Res; 2005; 149():65-81. PubMed ID: 16226577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An unsupervised learning model of neural plasticity: Orientation selectivity in goggle-reared kittens.
    Hsu AS; Dayan P
    Vision Res; 2007 Oct; 47(22):2868-77. PubMed ID: 17850840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.