BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 15913386)

  • 21. Mechanisms of photoinduced Calpha[Single Bond]Cbeta bond breakage in protonated aromatic amino acids.
    Lucas B; Barat M; Fayeton JA; Perot M; Jouvet C; Grégoire G; Brondsted Nielsen S
    J Chem Phys; 2008 Apr; 128(16):164302. PubMed ID: 18447434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mass-spectrometric and computational study of tryptophan radicals (Trp + H)˙ produced by collisional electron transfer to protonated tryptophan in the gas phase.
    Gregersen JA; Tureček F
    Phys Chem Chem Phys; 2010 Nov; 12(41):13434-47. PubMed ID: 20830385
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The nature of intermolecular interactions between aromatic amino acid residues.
    Gervasio FL; Chelli R; Procacci P; Schettino V
    Proteins; 2002 Jul; 48(1):117-25. PubMed ID: 12012343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Damage of aromatic amino acids by the atmospheric free radical oxidant NO3˙ in the presence of NO2˙, N2O4, O3 and O2.
    Goeschen C; Wibowo N; White JM; Wille U
    Org Biomol Chem; 2011 May; 9(9):3380-5. PubMed ID: 21412525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glucosylthioureidocalix[4]arenes: Synthesis, conformations and gas phase recognition of amino acids.
    Torvinen M; Neitola R; Sansone F; Baldini L; Ungaro R; Casnati A; Vainiotalo P; Kalenius E
    Org Biomol Chem; 2010 Feb; 8(4):906-15. PubMed ID: 20135051
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adsorption and properties of aromatic amino acids on single-walled carbon nanotubes.
    Wang C; Li S; Zhang R; Lin Z
    Nanoscale; 2012 Feb; 4(4):1146-53. PubMed ID: 22095051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The selectivity of charged phenyl radicals in hydrogen atom abstraction reactions with isopropanol.
    Jing L; Guler LP; Pates G; Kenttämaa HI
    J Phys Chem A; 2008 Oct; 112(40):9708-15. PubMed ID: 18774790
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electronic structure of aromatic amino acids studied by soft x-ray spectroscopy.
    Zhang W; Carravetta V; Plekan O; Feyer V; Richter R; Coreno M; Prince KC
    J Chem Phys; 2009 Jul; 131(3):035103. PubMed ID: 19624235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stacking efficiency and flexibility analysis of aromatic amino acids in cap-binding proteins.
    Worch R; Stolarski R
    Proteins; 2008 Jun; 71(4):2026-37. PubMed ID: 18186485
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phenyl radicals react with dinucleoside phosphates by addition to purine bases and H-atom abstraction from a sugar moiety.
    Liu JA; Petzold CJ; Ramirez-Arizmendi LE; Perez J; Kenttämaa H
    J Am Chem Soc; 2005 Sep; 127(37):12758-9. PubMed ID: 16159243
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Light-induced oxidation of tryptophan and histidine. Reactivity of aromatic N-heterocycles toward triplet-excited flavins.
    Huvaere K; Skibsted LH
    J Am Chem Soc; 2009 Jun; 131(23):8049-60. PubMed ID: 19459626
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Can the night-time atmospheric oxidant NO*3 damage aromatic amino acids?
    Sigmund DC; Wille U
    Chem Commun (Camb); 2008 May; (18):2121-3. PubMed ID: 18438488
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron transfer between guanosine radicals and amino acids in aqueous solution. II. Reduction of guanosine radicals by tryptophan.
    Morozova OB; Kiryutin AS; Yurkovskaya AV
    J Phys Chem B; 2008 Mar; 112(9):2747-54. PubMed ID: 18266352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of the separation of the charged groups and aromatic ring on interaction of tyrosine and phenylalanine analogues and derivatives with beta-cyclodextrin.
    Mrozek J; Banecki B; Karolczak J; Wiczk W
    Biophys Chem; 2005 Aug; 116(3):237-50. PubMed ID: 15896899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aromatic side-chain interactions in proteins. II. Near- and far-sequence Phe-X pairs.
    Thomas A; Meurisse R; Brasseur R
    Proteins; 2002 Sep; 48(4):635-44. PubMed ID: 12211031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Triplet- vs. singlet-state imposed photochemistry. The role of substituent effects on the photo-Fries and photodissociation reaction of triphenylmethyl silanes.
    Zarkadis AK; Georgakilas V; Perdikomatis GP; Trifonov A; Gurzadyan GG; Skoulika S; Siskos MG
    Photochem Photobiol Sci; 2005 Jun; 4(6):469-80. PubMed ID: 15920631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amino/aromatic interactions in proteins: is the evidence stacked against hydrogen bonding?
    Mitchell JB; Nandi CL; McDonald IK; Thornton JM; Price SL
    J Mol Biol; 1994 Jun; 239(2):315-31. PubMed ID: 8196060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrogen bonding constrains free radical reaction dynamics at serine and threonine residues in peptides.
    Thomas DA; Sohn CH; Gao J; Beauchamp JL
    J Phys Chem A; 2014 Sep; 118(37):8380-92. PubMed ID: 24605822
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stable gas-phase radical cations of dimeric tryptophan and tyrosine derivatives.
    Ke Y; Verkerk UH; Shek PY; Hopkinson AC; Siu KW
    J Phys Chem B; 2006 Apr; 110(16):8517-23. PubMed ID: 16623540
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction of pepsin with aromatic amino acids and their derivatives immobilized to Sepharose.
    Frýdlová J; Kucerová Z; Tichá M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Feb; 863(1):135-40. PubMed ID: 18255363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.