BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 15914092)

  • 1. Differential pulse voltammetric studies of ethidium bromide binding to DNA.
    Minasyan SH; Tavadyan LA; Antonyan AP; Davtyan HG; Parsadanyan MA; Vardevanyan PO
    Bioelectrochemistry; 2006 Jan; 68(1):48-55. PubMed ID: 15914092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Study of complexes of ethidium bromide with DNA by differential pulse voltammetry].
    Vardevanian PO; Antonian AP; Davtian AG; Arakelian AV; Minasian SG; Tavadian LA
    Biofizika; 2005; 50(2):371-3. PubMed ID: 15857001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex-formation of Ethidium Bromide with poly[d(A-T)].poly[d(A-T)].
    Vardevanyan PO; Antonyan AP; Parsadanyan MA; Davtyan HG; Boyajyan ZR; Karapetian AT
    J Biomol Struct Dyn; 2005 Feb; 22(4):465-70. PubMed ID: 15588109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The binding of ethidium bromide with DNA: interaction with single- and double-stranded structures.
    Vardevanyan PO; Antonyan AP; Parsadanyan MA; Davtyan HG; Karapetyan AT
    Exp Mol Med; 2003 Dec; 35(6):527-33. PubMed ID: 14749530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of ethidium bromide interaction peculiarities with DNA.
    Vardevanyan PO; Antonyan AP; Manukyan GA; Karapetyan AT
    Exp Mol Med; 2001 Dec; 33(4):205-8. PubMed ID: 11795481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of rac-[Cu(diimine)3]2+ and rac-[Zn(diimine)3]2+ complexes with CT DNA: effect of fluxional Cu(II) geometry on DNA binding, ligand-promoted exciton coupling and prominent DNA cleavage.
    Ramakrishnan S; Palaniandavar M
    Dalton Trans; 2008 Aug; (29):3866-78. PubMed ID: 18629409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new biophysics approach using photoacoustic spectroscopy to study the DNA-ethidium bromide interaction.
    Bugs R; Cornélio ML
    Eur Biophys J; 2002 Jun; 31(3):232-40. PubMed ID: 12029336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of interaction of emodin and DNA in the presence of ethidium bromide by spectroscopic method.
    Bi S; Zhang H; Qiao C; Sun Y; Liu C
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jan; 69(1):123-9. PubMed ID: 17548242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Connection of ethidium bromide with single-stranded DNA].
    Vardevanian PO; Antonian AP; Parsadanian MA; Lavtian AG; Karapetian AT
    Biofizika; 2003; 48(4):644-7. PubMed ID: 14515482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint interaction of ethidium bromide and methylene blue with DNA. The effect of ionic strength on binding thermodynamic parameters.
    Vardevanyan PO; Antonyan AP; Parsadanyan MA; Torosyan MA; Karapetian AT
    J Biomol Struct Dyn; 2016 Jul; 34(7):1377-82. PubMed ID: 26239502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T-jump fluorescence relaxation study of the binding of ethidium cation to natural DNA.
    Monaco RR; Gardiner WC
    Biochem Biophys Res Commun; 1993 Oct; 196(2):975-83. PubMed ID: 8240376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltammetry of the interaction of metronidazole with DNA and its analytical applications.
    Jiang X; Lin X
    Bioelectrochemistry; 2006 May; 68(2):206-12. PubMed ID: 16253570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper(II) complexes of tridentate pyridylmethylethylenediamines: role of ligand steric hindrance on DNA binding and cleavage.
    Raja A; Rajendiran V; Uma Maheswari P; Balamurugan R; Kilner CA; Halcrow MA; Palaniandavar M
    J Inorg Biochem; 2005 Aug; 99(8):1717-32. PubMed ID: 16039720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of antioxidant flavonoids with calf thymus DNA analyzed by spectroscopic and electrochemical methods.
    Hegde AH; Prashanth SN; Seetharamappa J
    J Pharm Biomed Anal; 2012 Apr; 63():40-6. PubMed ID: 22349882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethidium bromide-adsorbed graphene templates as a platform for preferential sensing of DNA.
    Nandi S; Routh P; Layek RK; Nandi AK
    Biomacromolecules; 2012 Oct; 13(10):3181-8. PubMed ID: 22984813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of ionic strength on Hoechst 33258 binding with DNA.
    Vardevanyan PO; Antonyan AP; Parsadanyan MA; Pirumyan KV; Muradyan AM; Karapetian AT
    J Biomol Struct Dyn; 2008 Jun; 25(6):641-6. PubMed ID: 18399697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Study on the binding mode of sulfated chitosans with nucleic acids using spectral analysis].
    Zhang HR; Guo SY; Li L; Cai MY; Zheng BS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Nov; 27(11):2294-8. PubMed ID: 18260417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical characterization of nanoparticles formed between DNA and phosphorylcholine substituted chitosans.
    Casé AH; Dalla Picola IP; Zaniquelli ME; Fernandes JC; Taboga SR; Winnik FM; Tiera MJ
    J Colloid Interface Sci; 2009 Aug; 336(1):125-33. PubMed ID: 19446829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mononuclear metal complexes with ciprofloxacin: Synthesis, characterization and DNA-binding properties.
    Psomas G
    J Inorg Biochem; 2008 Sep; 102(9):1798-811. PubMed ID: 18621421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical and spectroscopic study of octadecyltrimethylammonium bromide/DNA surfoplexes.
    Rodríguez-Pulido A; Aicart E; Junquera E
    Langmuir; 2009 Apr; 25(8):4402-11. PubMed ID: 19366220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.