BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 15914175)

  • 1. Preferential solubilization of dodecanol from dodecanol-limonene binary oil mixture in sodium dihexyl sulfosuccinate microemulsions: effect on optimum salinity and oil solubilization capacity.
    Szekeres E; Acosta E; Sabatini DA; Harwell JH
    J Colloid Interface Sci; 2005 Jul; 287(1):273-87. PubMed ID: 15914175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A two-state model for selective solubilization of benzene-limonene mixtures in sodium dihexyl sulfosuccinate microemulsions.
    Szekeres E; Acosta E; Sabatini DA; Harwell JH
    Langmuir; 2004 Aug; 20(16):6560-9. PubMed ID: 15274555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling solubilization of oil mixtures in anionic microemulsions II. Mixtures of polar and non-polar oils.
    Szekeres E; Acosta E; Sabatini DA; Harwell JH
    J Colloid Interface Sci; 2006 Feb; 294(1):222-33. PubMed ID: 16081087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microemulsions of triglyceride-based oils: The effect of co-oil and salinity on phase diagrams.
    Komesvarakul N; Sanders MD; Szekeres E; Acosta EJ; Faller JF; Mentlik T; Fisher LB; Nicoll G; Sabatini DA; Scamehorn JF
    J Cosmet Sci; 2006; 57(4):309-25. PubMed ID: 16957810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly in linker-modified microemulsions.
    Acosta EJ; Harwell JH; Sabatini DA
    J Colloid Interface Sci; 2004 Jun; 274(2):652-64. PubMed ID: 15144842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the hydrophilic-lipophilic nature of asphaltenic oils and naphthenic amphiphiles using microemulsion models.
    Kiran SK; Acosta EJ; Moran K
    J Colloid Interface Sci; 2009 Aug; 336(1):304-13. PubMed ID: 19398106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water solubilization capacity of mixed reverse micelles: effect of surfactant component, the nature of the oil, and electrolyte concentration.
    Paul BK; Mitra RK
    J Colloid Interface Sci; 2005 Aug; 288(1):261-79. PubMed ID: 15927587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatible lecithin-based microemulsions with rhamnolipid and sophorolipid biosurfactants: formulation and potential applications.
    Nguyen TT; Edelen A; Neighbors B; Sabatini DA
    J Colloid Interface Sci; 2010 Aug; 348(2):498-504. PubMed ID: 20471022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excess of Solubilization and Curvature in Nonionic Microemulsions.
    Testard F; Zemb T
    J Colloid Interface Sci; 1999 Nov; 219(1):11-19. PubMed ID: 10527567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of single-phase microemulsions in toluene/water/nonionic surfactant systems.
    Gotch AJ; Loar GW; Reeder AJ; Glista EE
    Langmuir; 2008 May; 24(9):4485-93. PubMed ID: 18351790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of temperature and salt on the phase behavior of nonionic and mixed nonionic-ionic microemulsions with fish-tail diagrams.
    Mitra RK; Paul BK
    J Colloid Interface Sci; 2005 Nov; 291(2):550-9. PubMed ID: 16043189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides.
    Djekic L; Primorac M
    Int J Pharm; 2008 Mar; 352(1-2):231-9. PubMed ID: 18068919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water Solubilization in Nonionic Microemulsions Stabilized by Grafted Siliconic Emulsifiers.
    Garti N; Aserin A; Wachtel E; Gans O; Shaul Y
    J Colloid Interface Sci; 2001 Jan; 233(2):286-294. PubMed ID: 11121278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microemulsions as transdermal drug delivery vehicles.
    Kogan A; Garti N
    Adv Colloid Interface Sci; 2006 Nov; 123-126():369-85. PubMed ID: 16843424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Interfacial Alcohol Concentrations on Oil Solubilization by Sodium Dodecyl Sulfate Micelles.
    Zhou M; Rhue RD
    J Colloid Interface Sci; 2000 Aug; 228(1):18-23. PubMed ID: 10882488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Adding an Amphiphilic Solubilization Improver, Sucrose Distearate, on the Solubilization Capacity of Nonionic Microemulsions.
    Aramaki K; Hayashi T; Katsuragi T; Ishitobi M; Kunieda H
    J Colloid Interface Sci; 2001 Apr; 236(1):14-19. PubMed ID: 11254322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viability and permeability across Caco-2 cells of CBZ solubilized in fully dilutable microemulsions.
    Kogan A; Kesselman E; Danino D; Aserin A; Garti N
    Colloids Surf B Biointerfaces; 2008 Oct; 66(1):1-12. PubMed ID: 18599273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulating chlorinated hydrocarbon microemulsions using linker molecules.
    Acosta E; Tran S; Uchiyama H; Sabatini DA; Harwell JH
    Environ Sci Technol; 2002 Nov; 36(21):4618-24. PubMed ID: 12433173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved solubilization of Celecoxib in U-type nonionic microemulsions and their structural transitions with progressive aqueous dilution.
    Garti N; Avrahami M; Aserin A
    J Colloid Interface Sci; 2006 Jul; 299(1):352-65. PubMed ID: 16529763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-diffusion nuclear magnetic resonance, microstructure transitions, and solubilization capacity of phytosterols and cholesterol in Winsor IV food-grade microemulsions.
    Spernath A; Yaghmur A; Aserin A; Hoffman RE; Garti N
    J Agric Food Chem; 2003 Apr; 51(8):2359-64. PubMed ID: 12670181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.