These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

543 related articles for article (PubMed ID: 15914184)

  • 41. Anomalous particle rotation and resulting microstructure of colloids in AC electric fields.
    Lele PP; Mittal M; Furst EM
    Langmuir; 2008 Nov; 24(22):12842-8. PubMed ID: 18950210
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrokinetics of concentrated suspensions of spherical colloidal particles with surface conductance, arbitrary zeta potential, and double-layer thickness in static electric fields.
    Carrique F; Arroyo FJ; Delgado AV
    J Colloid Interface Sci; 2002 Aug; 252(1):126-37. PubMed ID: 16290771
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Particle chain display--an optofluidic electronic paper.
    Fan SK; Chiu CP; Hsu CH; Chen SC; Huang LL; Lin YH; Fang WF; Chen JK; Yang JT
    Lab Chip; 2012 Nov; 12(22):4870-6. PubMed ID: 23026879
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Flow properties of freshly prepared ettringite suspensions in water at 25 degrees C.
    Vladu CM; Hall C; Maitland GC
    J Colloid Interface Sci; 2006 Feb; 294(2):466-72. PubMed ID: 16112125
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Study of the colloidal stability of concentrated bimodal magnetic fluids.
    Viota JL; González-Caballero F; Durán JD; Delgado AV
    J Colloid Interface Sci; 2007 May; 309(1):135-9. PubMed ID: 17346730
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Monodisperse conducting colloidal dipoles with symmetric dimer structure for enhancing electrorheology properties.
    Shin K; Kim D; Cho JC; Lim HS; Kim JW; Suh KD
    J Colloid Interface Sci; 2012 May; 374(1):18-24. PubMed ID: 22365839
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of Electrode Pattern on the Column Structure and Yield Stress of Electrorheological Fluids.
    Otsubo Y
    J Colloid Interface Sci; 1997 Jun; 190(2):466-71. PubMed ID: 9241191
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of non-equilibrium association-dissociation processes in the dynamic electrophoretic mobility and dielectric response of realistic salt-free concentrated suspensions.
    Carrique F; Ruiz-Reina E; Lechuga L; Arroyo FJ; Delgado Á
    Adv Colloid Interface Sci; 2013 Dec; 201-202():57-67. PubMed ID: 24161224
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Attraction between particles at a liquid interface due to the interplay of gravity- and electric-field-induced interfacial deformations.
    Boneva MP; Danov KD; Christov NC; Kralchevsky PA
    Langmuir; 2009 Aug; 25(16):9129-39. PubMed ID: 19719220
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of electrolyte conductivity on electrophoretic deposition.
    Stappers L; Zhang L; Van der Biest O; Fransaer J
    J Colloid Interface Sci; 2008 Dec; 328(2):436-46. PubMed ID: 18929370
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Liquid crystal order in colloidal suspensions of spheroidal particles by direct current electric field assembly.
    Shah AA; Kang H; Kohlstedt KL; Ahn KH; Glotzer SC; Monroe CW; Solomon MJ
    Small; 2012 May; 8(10):1551-62. PubMed ID: 22383392
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dielectric and electrical properties of electrorheological carbon suspensions.
    Negita K; Misono Y; Yamaguchi T; Shinagawa J
    J Colloid Interface Sci; 2008 May; 321(2):452-8. PubMed ID: 18342876
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrocoalescence: effects of DC electric fields on coalescence of drops at planar interfaces.
    Aryafar H; Kavehpour HP
    Langmuir; 2009 Nov; 25(21):12460-5. PubMed ID: 19817472
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of the response of suspended colloidal soft particles to a constant electric field.
    López-García JJ; Grosse C; Horno J
    J Colloid Interface Sci; 2005 Jun; 286(1):400-9. PubMed ID: 15848444
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DC dielectrophoretic particle-particle interactions and their relative motions.
    Ai Y; Qian S
    J Colloid Interface Sci; 2010 Jun; 346(2):448-54. PubMed ID: 20334869
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dispersion Stability and Electrorheological Properties of Polyaniline Particle Suspensions Stabilized by Poly(vinyl methyl ether).
    Chin BD; Park OO
    J Colloid Interface Sci; 2001 Feb; 234(2):344-350. PubMed ID: 11161520
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure of electrorheological fluids under an electric field and a shear flow: experiment and computer simulation.
    Cao JG; Huang JP; Zhou LW
    J Phys Chem B; 2006 Jun; 110(24):11635-9. PubMed ID: 16800457
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of water dissociation and CO2 contamination on the electrophoretic mobility of a spherical particle in aqueous salt-free concentrated suspensions.
    Carrique F; Ruiz-Reina E
    J Phys Chem B; 2009 Jun; 113(25):8613-25. PubMed ID: 19485311
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rheology and UV protection properties of suspensions of fine titanium dioxides in a silicone oil.
    Nasu A; Otsubo Y
    J Colloid Interface Sci; 2006 Apr; 296(2):558-64. PubMed ID: 16246357
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The giant electrorheological effect in suspensions of nanoparticles.
    Wen W; Huang X; Yang S; Lu K; Sheng P
    Nat Mater; 2003 Nov; 2(11):727-30. PubMed ID: 14528296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.