BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

657 related articles for article (PubMed ID: 15914538)

  • 21. Catalase gene disruptant of the human pathogenic yeast Candida albicans is defective in hyphal growth, and a catalase-specific inhibitor can suppress hyphal growth of wild-type cells.
    Nakagawa Y
    Microbiol Immunol; 2008 Jan; 52(1):16-24. PubMed ID: 18352908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell cycle arrest during S or M phase generates polarized growth via distinct signals in Candida albicans.
    Bachewich C; Nantel A; Whiteway M
    Mol Microbiol; 2005 Aug; 57(4):942-59. PubMed ID: 16091036
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Candida albicans Sfl1 suppresses flocculation and filamentation.
    Bauer J; Wendland J
    Eukaryot Cell; 2007 Oct; 6(10):1736-44. PubMed ID: 17766464
    [TBL] [Abstract][Full Text] [Related]  

  • 24. UME6 is a crucial downstream target of other transcriptional regulators of true hyphal development in Candida albicans.
    Zeidler U; Lettner T; Lassnig C; Müller M; Lajko R; Hintner H; Breitenbach M; Bito A
    FEMS Yeast Res; 2009 Feb; 9(1):126-42. PubMed ID: 19054126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional analysis of Candida albicans genes whose Saccharomyces cerevisiae homologues are involved in endocytosis.
    Martin R; Hellwig D; Schaub Y; Bauer J; Walther A; Wendland J
    Yeast; 2007 Jun; 24(6):511-22. PubMed ID: 17431925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RA domain-mediated interaction of Cdc35 with Ras1 is essential for increasing cellular cAMP level for Candida albicans hyphal development.
    Fang HM; Wang Y
    Mol Microbiol; 2006 Jul; 61(2):484-96. PubMed ID: 16856944
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rsr1 focuses Cdc42 activity at hyphal tips and promotes maintenance of hyphal development in Candida albicans.
    Pulver R; Heisel T; Gonia S; Robins R; Norton J; Haynes P; Gale CA
    Eukaryot Cell; 2013 Apr; 12(4):482-95. PubMed ID: 23223038
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic localization and function of Bni1p at the sites of directed growth in Saccharomyces cerevisiae.
    Ozaki-Kuroda K; Yamamoto Y; Nohara H; Kinoshita M; Fujiwara T; Irie K; Takai Y
    Mol Cell Biol; 2001 Feb; 21(3):827-39. PubMed ID: 11154270
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The 65 kDa mannoprotein gene of Candida albicans encodes a putative beta-glucanase adhesin required for hyphal morphogenesis and experimental pathogenicity.
    Sandini S; La Valle R; De Bernardis F; Macrì C; Cassone A
    Cell Microbiol; 2007 May; 9(5):1223-38. PubMed ID: 17217426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Yeast-to-hyphal transition triggers formin-dependent Golgi localization to the growing tip in Candida albicans.
    Rida PC; Nishikawa A; Won GY; Dean N
    Mol Biol Cell; 2006 Oct; 17(10):4364-78. PubMed ID: 16855023
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Candida albicans hyphae have a Spitzenkörper that is distinct from the polarisome found in yeast and pseudohyphae.
    Crampin H; Finley K; Gerami-Nejad M; Court H; Gale C; Berman J; Sudbery P
    J Cell Sci; 2005 Jul; 118(Pt 13):2935-47. PubMed ID: 15976451
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence.
    Kumamoto CA; Vinces MD
    Cell Microbiol; 2005 Nov; 7(11):1546-54. PubMed ID: 16207242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyclin-dependent kinases control septin phosphorylation in Candida albicans hyphal development.
    Sinha I; Wang YM; Philp R; Li CR; Yap WH; Wang Y
    Dev Cell; 2007 Sep; 13(3):421-32. PubMed ID: 17765684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphatidylinositol-dependent phospholipases C Plc2 and Plc3 of Candida albicans are dispensable for morphogenesis and host-pathogen interaction.
    Knechtle P; Goyard S; Brachat S; Ibrahim-Granet O; d'Enfert C
    Res Microbiol; 2005 Aug; 156(7):822-9. PubMed ID: 16040234
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phr1p, a glycosylphosphatidylinsitol-anchored β(1,3)-glucanosyltransferase critical for hyphal wall formation, localizes to the apical growth sites and septa in Candida albicans.
    Ragni E; Calderon J; Fascio U; Sipiczki M; Fonzi WA; Popolo L
    Fungal Genet Biol; 2011 Aug; 48(8):793-805. PubMed ID: 21601645
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Candida albicans PHO81 is required for the inhibition of hyphal development by farnesoic acid.
    Chung SC; Kim TI; Ahn CH; Shin J; Oh KB
    FEBS Lett; 2010 Nov; 584(22):4639-45. PubMed ID: 20965180
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tetracycline-inducible gene expression and gene deletion in Candida albicans.
    Park YN; Morschhäuser J
    Eukaryot Cell; 2005 Aug; 4(8):1328-42. PubMed ID: 16087738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The F-box protein Grr1 regulates the stability of Ccn1, Cln3 and Hof1 and cell morphogenesis in Candida albicans.
    Li WJ; Wang YM; Zheng XD; Shi QM; Zhang TT; Bai C; Li D; Sang JL; Wang Y
    Mol Microbiol; 2006 Oct; 62(1):212-26. PubMed ID: 16987179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans.
    Urban C; Xiong X; Sohn K; Schröppel K; Brunner H; Rupp S
    Mol Microbiol; 2005 Sep; 57(5):1318-41. PubMed ID: 16102003
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Candida albicans AGE3, the ortholog of the S. cerevisiae ARF-GAP-encoding gene GCS1, is required for hyphal growth and drug resistance.
    Lettner T; Zeidler U; Gimona M; Hauser M; Breitenbach M; Bito A
    PLoS One; 2010 Aug; 5(8):e11993. PubMed ID: 20700541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.