These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

660 related articles for article (PubMed ID: 15914538)

  • 41. The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans.
    Cao F; Lane S; Raniga PP; Lu Y; Zhou Z; Ramon K; Chen J; Liu H
    Mol Biol Cell; 2006 Jan; 17(1):295-307. PubMed ID: 16267276
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polarized hyphal growth in Candida albicans requires the Wiskott-Aldrich Syndrome protein homolog Wal1p.
    Walther A; Wendland J
    Eukaryot Cell; 2004 Apr; 3(2):471-82. PubMed ID: 15075276
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Roles of Zinc-responsive transcription factor Csr1 in filamentous growth of the pathogenic Yeast Candida albicans.
    Kim MJ; Kil M; Jung JH; Kim J
    J Microbiol Biotechnol; 2008 Feb; 18(2):242-7. PubMed ID: 18309267
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deletion of the high-affinity cAMP phosphodiesterase encoded by PDE2 affects stress responses and virulence in Candida albicans.
    Wilson D; Tutulan-Cunita A; Jung W; Hauser NC; Hernandez R; Williamson T; Piekarska K; Rupp S; Young T; Stateva L
    Mol Microbiol; 2007 Aug; 65(4):841-56. PubMed ID: 17614954
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CRZ1, a target of the calcineurin pathway in Candida albicans.
    Karababa M; Valentino E; Pardini G; Coste AT; Bille J; Sanglard D
    Mol Microbiol; 2006 Mar; 59(5):1429-51. PubMed ID: 16468987
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Accumulation of P-bodies in Candida albicans under different stress and filamentous growth conditions.
    Jung JH; Kim J
    Fungal Genet Biol; 2011 Dec; 48(12):1116-23. PubMed ID: 22056521
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterisation of Aspergillus nidulans polarisome component BemA.
    Leeder AC; Turner G
    Fungal Genet Biol; 2008 Jun; 45(6):897-911. PubMed ID: 18234530
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Distinct roles of two ceramide synthases, CaLag1p and CaLac1p, in the morphogenesis of Candida albicans.
    Cheon SA; Bal J; Song Y; Hwang HM; Kim AR; Kang WK; Kang HA; Hannibal-Bach HK; Knudsen J; Ejsing CS; Kim JY
    Mol Microbiol; 2012 Feb; 83(4):728-45. PubMed ID: 22211636
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functional analysis of Candida albicans genes encoding SH3-domain-containing proteins.
    Reijnst P; Walther A; Wendland J
    FEMS Yeast Res; 2010 Jun; 10(4):452-61. PubMed ID: 20402797
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An RNA transport system in Candida albicans regulates hyphal morphology and invasive growth.
    Elson SL; Noble SM; Solis NV; Filler SG; Johnson AD
    PLoS Genet; 2009 Sep; 5(9):e1000664. PubMed ID: 19779551
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Candida albicans INT1-induced filamentation in Saccharomyces cerevisiae depends on Sla2p.
    Asleson CM; Bensen ES; Gale CA; Melms AS; Kurischko C; Berman J
    Mol Cell Biol; 2001 Feb; 21(4):1272-84. PubMed ID: 11158313
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis.
    Moran GP; MacCallum DM; Spiering MJ; Coleman DC; Sullivan DJ
    Mol Microbiol; 2007 Nov; 66(4):915-29. PubMed ID: 17927699
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Septin function in Candida albicans morphogenesis.
    Warenda AJ; Konopka JB
    Mol Biol Cell; 2002 Aug; 13(8):2732-46. PubMed ID: 12181342
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of the fungal Ras-protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis.
    Park H; Myers CL; Sheppard DC; Phan QT; Sanchez AA; E Edwards J; Filler SG
    Cell Microbiol; 2005 Apr; 7(4):499-510. PubMed ID: 15760450
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Candida albicans Rgd1 is a RhoGAP protein involved in the control of filamentous growth.
    Ness F; Prouzet-Mauleon V; Vieillemard A; Lefebvre F; Noël T; Crouzet M; Doignon F; Thoraval D
    Fungal Genet Biol; 2010 Dec; 47(12):1001-11. PubMed ID: 20637818
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Vacuolar dynamics during the morphogenetic transition in Candida albicans.
    Veses V; Gow NA
    FEMS Yeast Res; 2008 Dec; 8(8):1339-48. PubMed ID: 19054134
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Candida albicans protein analysis during hyphal differentiation using an integrative HA-tagging method.
    Lee KH; Jun S; Hur HS; Ryu JJ; Kim J
    Biochem Biophys Res Commun; 2005 Nov; 337(3):784-90. PubMed ID: 16212935
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Candida albicans strain-dependent virulence and Rim13p-mediated filamentation in experimental keratomycosis.
    Mitchell BM; Wu TG; Jackson BE; Wilhelmus KR
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):774-80. PubMed ID: 17251477
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 2-dodecanol (decyl methyl carbinol) inhibits hyphal formation and SIR2 expression in C. albicans.
    Lim CS; Wong WF; Rosli R; Ng KP; Seow HF; Chong PP
    J Basic Microbiol; 2009 Dec; 49(6):579-83. PubMed ID: 19810039
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gpr1, a putative G-protein-coupled receptor, regulates morphogenesis and hypha formation in the pathogenic fungus Candida albicans.
    Miwa T; Takagi Y; Shinozaki M; Yun CW; Schell WA; Perfect JR; Kumagai H; Tamaki H
    Eukaryot Cell; 2004 Aug; 3(4):919-31. PubMed ID: 15302825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.