These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 15914656)

  • 1. Cardiac performance in the zebrafish breakdance mutant.
    Kopp R; Schwerte T; Pelster B
    J Exp Biol; 2005 Jun; 208(Pt 11):2123-34. PubMed ID: 15914656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An OpenCV-Based Approach for Automated Cardiac Rhythm Measurement in Zebrafish from Video Datasets.
    Farhan A; Kurnia KA; Saputra F; Chen KH; Huang JC; Roldan MJM; Lai YH; Hsiao CD
    Biomolecules; 2021 Oct; 11(10):. PubMed ID: 34680109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forward genetic screen using a gene-breaking trap approach identifies a novel role of
    Angom RS; Joshi A; Patowary A; Sivadas A; Ramasamy S; K V S; Kaushik K; Sabharwal A; Lalwani MK; K S; Singh N; Scaria V; Sivasubbu S
    Front Cell Dev Biol; 2024; 12():1339292. PubMed ID: 38533084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D heart morphological changes in response to developmental temperature in zebrafish: More than ventricle roundness.
    Dimitriadi A; Geladakis G; Koumoundouros G
    J Morphol; 2021 Jan; 282(1):80-87. PubMed ID: 33617037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental temperature has persistent, sexually dimorphic effects on zebrafish cardiac anatomy.
    Dimitriadi A; Beis D; Arvanitidis C; Adriaens D; Koumoundouros G
    Sci Rep; 2018 May; 8(1):8125. PubMed ID: 29802254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fins, fur, and wings: the study of Tmem161b across species, and what it tells us about its function in the heart.
    Smith KA; Dominado N; Briffa JF
    Mamm Genome; 2023 Jun; 34(2):270-275. PubMed ID: 37222785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Human Cardiac Arrhythmias: Insights from Zebrafish.
    Gauvrit S; Bossaer J; Lee J; Collins MM
    J Cardiovasc Dev Dis; 2022 Jan; 9(1):. PubMed ID: 35050223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effective use of blebbistatin to study the action potential of cardiac pacemaker cells of zebrafish (
    Marchant James L; Smith Frank M; Farrell Anthony P
    Curr Res Physiol; 2022; 5():48-54. PubMed ID: 35128467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel chemical suppressors of long QT syndrome identified by an in vivo functional screen.
    Peal DS; Mills RW; Lynch SN; Mosley JM; Lim E; Ellinor PT; January CT; Peterson RT; Milan DJ
    Circulation; 2011 Jan; 123(1):23-30. PubMed ID: 21098441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zebrafish as a model to study cardiac development and human cardiac disease.
    Bakkers J
    Cardiovasc Res; 2011 Jul; 91(2):279-88. PubMed ID: 21602174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zebrafish as a Model for Cardiovascular and Metabolic Disease: The Future of Precision Medicine.
    Angom RS; Nakka NMR
    Biomedicines; 2024 Mar; 12(3):. PubMed ID: 38540306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Elastography for Micropressure Characterization of Zebrafish Embryonic Cardiac Development.
    Vaish AG; Tomizawa Y; Daggett DF; Hoshino K
    Ann Biomed Eng; 2024 Mar; 52(3):647-656. PubMed ID: 38036895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small fish, big discoveries: zebrafish shed light on microbial biomarkers for neuro-immune-cardiovascular health.
    Sree Kumar H; Wisner AS; Refsnider JM; Martyniuk CJ; Zubcevic J
    Front Physiol; 2023; 14():1186645. PubMed ID: 37324381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of multiple imaging platforms to uncover cardiovascular defects in adult zebrafish.
    Bensimon-Brito A; Boezio GLM; Cardeira-da-Silva J; Wietelmann A; Ramkumar S; Lundegaard PR; Helker CSM; Ramadass R; Piesker J; Nauerth A; Mueller C; Stainier DYR
    Cardiovasc Res; 2022 Sep; 118(12):2665-2687. PubMed ID: 34609500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zebrafish as a New Tool in Heart Preservation Research.
    Da Silveira Cavalcante L; Tessier SN
    J Cardiovasc Dev Dis; 2021 Apr; 8(4):. PubMed ID: 33917701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utility of Zebrafish Models of Acquired and Inherited Long QT Syndrome.
    Simpson KE; Venkateshappa R; Pang ZK; Faizi S; Tibbits GF; Claydon TW
    Front Physiol; 2020; 11():624129. PubMed ID: 33519527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adult and Developing Zebrafish as Suitable Models for Cardiac Electrophysiology and Pathology in Research and Industry.
    Echeazarra L; Hortigón-Vinagre MP; Casis O; Gallego M
    Front Physiol; 2020; 11():607860. PubMed ID: 33519514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast
    Maioli V; Boniface A; Mahou P; Ortas JF; Abdeladim L; Beaurepaire E; Supatto W
    Biomed Opt Express; 2020 Oct; 11(10):6012-6026. PubMed ID: 33150002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined effects of elevated temperature and Deepwater Horizon oil exposure on the cardiac performance of larval mahi-mahi, Coryphaena hippurus.
    Perrichon P; Mager EM; Pasparakis C; Stieglitz JD; Benetti DD; Grosell M; Burggren WW
    PLoS One; 2018; 13(10):e0203949. PubMed ID: 30332409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of blood flow on cardiac development.
    Courchaine K; Rykiel G; Rugonyi S
    Prog Biophys Mol Biol; 2018 Sep; 137():95-110. PubMed ID: 29772208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.