These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 1591478)

  • 41. Metallochaperone for Cu,Zn-superoxide dismutase (CCS) protein but not mRNA is higher in organs from copper-deficient mice and rats.
    Prohaska JR; Broderius M; Brokate B
    Arch Biochem Biophys; 2003 Sep; 417(2):227-34. PubMed ID: 12941305
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Consequences of copper deficiency are not differentially influenced by carbohydrate source in young pigs fed a dried skim milk-based diet.
    Schoenemann HM; Failla ML; Fields M
    Biol Trace Elem Res; 1990 Apr; 25(1):21-33. PubMed ID: 1696108
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Marginal copper-restricted diets produce altered cardiac ultrastructure in the rat.
    Wildman RE; Hopkins R; Failla ML; Medeiros DM
    Proc Soc Exp Biol Med; 1995 Oct; 210(1):43-9. PubMed ID: 7675797
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Copper deficiency during perinatal development: effects on the immune response of mice.
    Prohaska JR; Lukasewycz OA
    J Nutr; 1989 Jun; 119(6):922-31. PubMed ID: 2664099
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of dietary copper and molybdenum on copper status, cytokine production, and humoral immune response of calves.
    Gengelbach GP; Spears JW
    J Dairy Sci; 1998 Dec; 81(12):3286-92. PubMed ID: 9891274
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of dietary homocysteine on copper status in rats.
    Brown JC; Strain JJ
    J Nutr; 1990 Sep; 120(9):1068-74. PubMed ID: 2168945
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effects of high dietary zinc and copper deficiency on the activity of copper-requiring metalloenzymes in the growing rat.
    L'Abbé MR; Fischer PW
    J Nutr; 1984 May; 114(5):813-22. PubMed ID: 6327957
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of time of introduction of a high-fructose, low-copper diet on copper deficiency in male rats.
    Lewis CG; Fields M; Beal T
    Biol Trace Elem Res; 1992 Dec; 35(3):239-46. PubMed ID: 1283691
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Direct transfer of copper from metallothionein to superoxide dismutase: a possible mechanism for differential supply of Cu to SOD and ceruloplasmin in LEC rats.
    Suzuki KT; Kuroda T
    Res Commun Mol Pathol Pharmacol; 1994 Oct; 86(1):15-23. PubMed ID: 7850252
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spontaneous and 2-nitropropane induced levels of 8-hydroxy-2'-deoxyguanosine in liver DNA of rats fed iron-deficient or manganese- and copper-deficient diets.
    Adachi S; Takemoto K; Hirosue T; Hosogai Y
    Carcinogenesis; 1993 Feb; 14(2):265-8. PubMed ID: 8382115
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of bacterial endotoxin on protecting copper-deficient rats from hyperoxia.
    Spence TH; Jenkinson SG; Johnson KH; Collins JF; Lawrence RA
    J Appl Physiol (1985); 1986 Sep; 61(3):982-7. PubMed ID: 3759784
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Alterations in hypertrophic gene expression by dietary copper restriction in mouse heart.
    Kang YJ; Wu H; Saari JT
    Proc Soc Exp Biol Med; 2000 Mar; 223(3):282-7. PubMed ID: 10719841
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of copper deficiency and Cu complexes on superoxide dismutase in rats.
    Dashti SI; Thomson M; Mameesh MS
    Nutrition; 1995; 11(5 Suppl):564-7. PubMed ID: 8748223
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of dietary zinc or copper deficiency on the primary free radical defense system in rats.
    Taylor CG; Bettger WJ; Bray TM
    J Nutr; 1988 May; 118(5):613-21. PubMed ID: 3367241
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Copper status and adriamycin treatment: effects on antioxidant status in mice.
    Zidenberg-Cherr S; Dreith D; Keen CL
    Toxicol Lett; 1989 Aug; 48(2):201-12. PubMed ID: 2772926
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Placental copper transport in the rat. III: Interaction between copper and iron in maternal protein deficiency.
    Barone A; Harper RG; Wapnir RA
    Placenta; 1998 Jan; 19(1):113-8. PubMed ID: 9481793
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Roles of metallothionein in copper homeostasis: responses to Cu-deficient diets in mice.
    Suzuki KT; Someya A; Komada Y; Ogra Y
    J Inorg Biochem; 2002 Jan; 88(2):173-82. PubMed ID: 11803037
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of different copper sources and levels on plasma superoxide dismutase, lipid peroxidation, and copper status of lambs.
    Cheng J; Ma H; Fan C; Zhang Z; Jia Z; Zhu X; Wang L
    Biol Trace Elem Res; 2011 Dec; 144(1-3):570-9. PubMed ID: 21556734
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluating the influence of National Research Council levels of copper, iron, manganese, and zinc using organic (Bioplex) minerals on resulting tissue mineral concentrations, metallothionein, and liver antioxidant enzymes in grower-finisher swine diets.
    Gowanlock DW; Mahan DC; Jolliff JS; Hill GM
    J Anim Sci; 2015 Mar; 93(3):1149-56. PubMed ID: 26020892
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A multielement trace mineral injection improves liver copper and selenium concentrations and manganese superoxide dismutase activity in beef steers.
    Genther ON; Hansen SL
    J Anim Sci; 2014 Feb; 92(2):695-704. PubMed ID: 24398829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.