BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 15914905)

  • 21. Identification of potential aryl hydrocarbon receptor antagonists in green tea.
    Palermo CM; Hernando JI; Dertinger SD; Kende AS; Gasiewicz TA
    Chem Res Toxicol; 2003 Jul; 16(7):865-72. PubMed ID: 12870889
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preliminary screening of the inhibitory effect of food extracts on activation of the aryl hydrocarbon receptor induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin.
    Amakura Y; Tsutsumi T; Nakamura M; Kitagawa H; Fujino J; Sasaki K; Yoshida T; Toyoda M
    Biol Pharm Bull; 2002 Feb; 25(2):272-4. PubMed ID: 11853182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Female Sprague-Dawley rats exposed to a single oral dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin exhibit sustained depletion of aryl hydrocarbon receptor protein in liver, spleen, thymus, and lung.
    Pollenz RS; Santostefano MJ; Klett E; Richardson VM; Necela B; Birnbaum LS
    Toxicol Sci; 1998 Apr; 42(2):117-28. PubMed ID: 9579024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theaflavins in black tea and catechins in green tea are equally effective antioxidants.
    Leung LK; Su Y; Chen R; Zhang Z; Huang Y; Chen ZY
    J Nutr; 2001 Sep; 131(9):2248-51. PubMed ID: 11533262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Black tea extract and theaflavin derivatives affect the pharmacokinetics of rosuvastatin by modulating organic anion transporting polypeptide (OATP) 2B1 activity.
    Kondo A; Narumi K; Okuhara K; Takahashi Y; Furugen A; Kobayashi M; Iseki K
    Biopharm Drug Dispos; 2019 Sep; 40(8):302-306. PubMed ID: 31400238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antimicrobial activities of tea catechins and theaflavins and tea extracts against Bacillus cereus.
    Friedman M; Henika PR; Levin CE; Mandrell RE; Kozukue N
    J Food Prot; 2006 Feb; 69(2):354-61. PubMed ID: 16496576
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The microbiota is essential for the generation of black tea theaflavins-derived metabolites.
    Chen H; Hayek S; Rivera Guzman J; Gillitt ND; Ibrahim SA; Jobin C; Sang S
    PLoS One; 2012; 7(12):e51001. PubMed ID: 23227227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel 4 S [3H]beta-naphthoflavone-binding protein in liver cytosol of female Sprague-Dawley rats treated with aryl hydrocarbon receptor agonists.
    Brauze D; Malejka-Giganti D
    Biochem J; 2000 May; 347 Pt 3(Pt 3):787-95. PubMed ID: 10769184
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study on mechanism of low bioavailability of black tea theaflavins by using Caco-2 cell monolayer.
    Qu F; Ai Z; Liu S; Zhang H; Chen Y; Wang Y; Ni D
    Drug Deliv; 2021 Dec; 28(1):1737-1747. PubMed ID: 34463173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theaflavin-3-gallate and theaflavin-3'-gallate, polyphenols in black tea with prooxidant properties.
    Babich H; Gottesman RT; Liebling EJ; Schuck AG
    Basic Clin Pharmacol Toxicol; 2008 Jul; 103(1):66-74. PubMed ID: 18346048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transformation of catechins into theaflavins by upregulation of CsPPO3 in preharvest tea (Camellia sinensis) leaves exposed to shading treatment.
    Yu Z; Liao Y; Zeng L; Dong F; Watanabe N; Yang Z
    Food Res Int; 2020 Mar; 129():108842. PubMed ID: 32036878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flavones and flavonols at dietary levels inhibit a transformation of aryl hydrocarbon receptor induced by dioxin.
    Ashida H; Fukuda I; Yamashita T; Kanazawa K
    FEBS Lett; 2000 Jul; 476(3):213-7. PubMed ID: 10913616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular binding of black tea theaflavins to biological membranes: relationship to bioactivities.
    Sirk TW; Friedman M; Brown EF
    J Agric Food Chem; 2011 Apr; 59(8):3780-7. PubMed ID: 21417313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of 17alpha-hydroxylase/C17,20-lyase (CYP17) from rat testis by green tea catechins and black tea theaflavins.
    Kimura K; Itakura Y; Goto R; Tojima M; Egawa N; Yoshihama M
    Biosci Biotechnol Biochem; 2007 Sep; 71(9):2325-8. PubMed ID: 17827674
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of collagenases from mouse lung carcinoma cells by green tea catechins and black tea theaflavins.
    Sazuka M; Imazawa H; Shoji Y; Mita T; Hara Y; Isemura M
    Biosci Biotechnol Biochem; 1997 Sep; 61(9):1504-6. PubMed ID: 9339552
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural identification of mouse fecal metabolites of theaflavin 3,3'-digallate using liquid chromatography tandem mass spectrometry.
    Chen H; Parks TA; Chen X; Gillitt ND; Jobin C; Sang S
    J Chromatogr A; 2011 Oct; 1218(41):7297-306. PubMed ID: 21906744
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: structure-activity relationship and mechanisms involved.
    Chung JY; Huang C; Meng X; Dong Z; Yang CS
    Cancer Res; 1999 Sep; 59(18):4610-7. PubMed ID: 10493515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure-activity relationships of anthraquinones on the suppression of DNA-binding activity of the aryl hydrocarbon receptor induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin.
    Fukuda I; Kaneko A; Nishiumi S; Kawase M; Nishikiori R; Fujitake N; Ashida H
    J Biosci Bioeng; 2009 Mar; 107(3):296-300. PubMed ID: 19269596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tea polyphenols inhibit IL-6 production in tumor necrosis factor superfamily 14-stimulated human gingival fibroblasts.
    Hosokawa Y; Hosokawa I; Ozaki K; Nakanishi T; Nakae H; Matsuo T
    Mol Nutr Food Res; 2010 Jul; 54 Suppl 2():S151-8. PubMed ID: 20461739
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chelatable metal ions are not required for aryl hydrocarbon receptor transformation to a DNA binding form: phenanthrolines are possible competitive antagonists of 2,3,7,8-tetrachlorodibenzo-p-dioxin.
    Mahon MJ; Gasiewicz TA
    Arch Biochem Biophys; 1992 Aug; 297(1):1-8. PubMed ID: 1322109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.