BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 15914911)

  • 1. Thermostability of refolded ovalbumin and S-ovalbumin.
    Takahashi N; Onda M; Hayashi K; Yamasaki M; Mita T; Hirose M
    Biosci Biotechnol Biochem; 2005 May; 69(5):922-31. PubMed ID: 15914911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermostabilization of ovalbumin by an alkaline treatment: examination for the possible implications of an altered serpin loop structure.
    Yamamoto H; Takahashi N; Yamasaki M; Arii Y; Hirose M
    Biosci Biotechnol Biochem; 2003 Apr; 67(4):830-7. PubMed ID: 12784625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature control for kinetic refolding of heat-denatured ovalbumin.
    Tani F; Shirai N; Onishi T; Venelle F; Yasumoto K; Doi E
    Protein Sci; 1997 Jul; 6(7):1491-502. PubMed ID: 9232650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermostabilization of ovalbumin by alkaline treatment: Examination of the possible roles of D-serine residues.
    Ishimaru T; Ito K; Tanaka M; Matsudomi N
    Protein Sci; 2010 Jun; 19(6):1205-12. PubMed ID: 20512973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-engineering study of contribution of conceivable D-serine residues to the thermostabilization of ovalbumin under alkaline conditions.
    Takahashi N; Maeda M; Yamasaki M; Mikami B
    Chem Biodivers; 2010 Jun; 7(6):1634-43. PubMed ID: 20564677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refolding mechanism of ovalbumin: investigation by using a starting urea-denatured disulfide isomer with mispaired CYS367-CYS382.
    Onda M; Hirose M
    J Biol Chem; 2003 Jun; 278(26):23600-9. PubMed ID: 12711610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refolding of urea-denatured ovalbumin that comprises non-native disulfide isomers.
    Onda M; Tatsumi E; Takahashi N; Hirose M
    J Biochem; 1997 Jul; 122(1):83-9. PubMed ID: 9276674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refolding process of ovalbumin from urea-denatured state. Evidence for the involvement of nonproductive side chain interactions in an early intermediate.
    Onda M; Tatsumi E; Takahashi N; Hirose M
    J Biol Chem; 1997 Feb; 272(7):3973-9. PubMed ID: 9020102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural properties of recombinant ovalbumin and its transformation into a thermostabilized form by alkaline treatment.
    Arii Y; Takahashi N; Tatsumi E; Hirose M
    Biosci Biotechnol Biochem; 1999 Aug; 63(8):1392-9. PubMed ID: 10501000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of S-ovalbumin as a non-loop-inserted thermostabilized serpin form.
    Yamasaki M; Takahashi N; Hirose M
    J Biol Chem; 2003 Sep; 278(37):35524-30. PubMed ID: 12840013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the carbohydrate chain and two phosphate moieties in the heat-induced aggregation of hen ovalbumin.
    Tani F; Shirai N; Nakanishi Y; Yasumoto K; Kitabatake N
    Biosci Biotechnol Biochem; 2004 Dec; 68(12):2466-76. PubMed ID: 15618616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loop-inserted and thermostabilized structure of P1-P1' cleaved ovalbumin mutant R339T.
    Yamasaki M; Arii Y; Mikami B; Hirose M
    J Mol Biol; 2002 Jan; 315(2):113-20. PubMed ID: 11779232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition of serine residues to the D-form during the conversion of ovalbumin into heat stable S-ovalbumin.
    Miyamoto T; Takahashi N; Sekine M; Ogawa T; Hidaka M; Homma H; Masaki H
    J Pharm Biomed Anal; 2015 Dec; 116():145-9. PubMed ID: 25982752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The unusually slow relaxation kinetics of the folding-unfolding of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus.
    Kaushik JK; Ogasahara K; Yutani K
    J Mol Biol; 2002 Mar; 316(4):991-1003. PubMed ID: 11884137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the intrachain disulfide bond of ovalbumin during conversion into S-ovalbumin.
    Takahashi N; Tatsumi E; Orita T; Hirose M
    Biosci Biotechnol Biochem; 1996 Sep; 60(9):1464-8. PubMed ID: 8987595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of protein charge on the generation of aggregation-prone conformers.
    Broersen K; Weijers M; de Groot J; Hamer RJ; de Jongh HH
    Biomacromolecules; 2007 May; 8(5):1648-56. PubMed ID: 17465525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermostabilization of ovalbumin in a developing egg by an alkalinity-regulated, two-step process.
    Hatta H; Nomura M; Takahashi N; Hirose M
    Biosci Biotechnol Biochem; 2001 Sep; 65(9):2021-7. PubMed ID: 11676015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and dynamical insights into the molten-globule form of ovalbumin.
    Bhattacharya M; Mukhopadhyay S
    J Phys Chem B; 2012 Jan; 116(1):520-31. PubMed ID: 22097968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible denaturation of disulfide-reduced ovalbumin and its reoxidation generating the native cystine cross-link.
    Takahashi N; Hirose M
    J Biol Chem; 1992 Jun; 267(16):11565-72. PubMed ID: 1597484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.