BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

631 related articles for article (PubMed ID: 15915258)

  • 1. Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel.
    Kim KS; Park JK
    Lab Chip; 2005 Jun; 5(6):657-64. PubMed ID: 15915258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully automated immunoassay for detection of prostate-specific antigen using nano-magnetic beads and micro-polystyrene bead composites, 'Beads on Beads'.
    Matsunaga T; Maeda Y; Yoshino T; Takeyama H; Takahashi M; Ginya H; Aasahina J; Tajima H
    Anal Chim Acta; 2007 Aug; 597(2):331-9. PubMed ID: 17683747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PDMS microfludic device for optical detection of protein immunoassay using gold nanoparticles.
    Luo C; Fu Q; Li H; Xu L; Sun M; Ouyang Q; Chen Y; Ji H
    Lab Chip; 2005 Jul; 5(7):726-9. PubMed ID: 15970965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetophoretic position detection for multiplexed immunoassay using colored microspheres in a microchannel.
    Hahn YK; Chang JB; Jin Z; Kim HS; Park JK
    Biosens Bioelectron; 2009 Mar; 24(7):1870-6. PubMed ID: 18990558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superporous agarose beads as a solid support for microfluidic immunoassay.
    Yang Y; Nam SW; Lee NY; Kim YS; Park S
    Ultramicroscopy; 2008 Sep; 108(10):1384-9. PubMed ID: 18550282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.
    Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK
    Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant magnetoresistive sensors and superparamagnetic nanoparticles: a chip-scale detection strategy for immunosorbent assays.
    Millen RL; Kawaguchi T; Granger MC; Porter MD; Tondra M
    Anal Chem; 2005 Oct; 77(20):6581-7. PubMed ID: 16223243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetophoretic immunoassay of allergen-specific IgE in an enhanced magnetic field gradient.
    Hahn YK; Jin Z; Kang JH; Oh E; Han MK; Kim HS; Jang JT; Lee JH; Cheon J; Kim SH; Park HS; Park JK
    Anal Chem; 2007 Mar; 79(6):2214-20. PubMed ID: 17288405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibody immobilization on to polystyrene substrate--on-chip immunoassay for horse IgG based on fluorescence.
    Darain F; Gan KL; Tjin SC
    Biomed Microdevices; 2009 Jun; 11(3):653-61. PubMed ID: 19130240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving agglutination tests by working in microfluidic channels.
    Degré G; Brunet E; Dodge A; Tabeling P
    Lab Chip; 2005 Jun; 5(6):691-4. PubMed ID: 15915264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic ELISA on non-passivated PDMS chip using magnetic bead transfer inside dual networks of channels.
    Herrmann M; Roy E; Veres T; Tabrizian M
    Lab Chip; 2007 Nov; 7(11):1546-52. PubMed ID: 17960284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superparamagnetic nanoparticle-polystyrene bead conjugates as pathogen capture mimics: a parametric study of factors affecting capture efficiency and specificity.
    Kell AJ; Somaskandan K; Stewart G; Bergeron MG; Simard B
    Langmuir; 2008 Apr; 24(7):3493-502. PubMed ID: 18290685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of C-reactive protein based on immunoassay using antibody-conjugated magnetic nanoparticles.
    Tsai HY; Hsu CF; Chiu IW; Fuh CB
    Anal Chem; 2007 Nov; 79(21):8416-9. PubMed ID: 17902698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel.
    Choi S; Park JK
    Lab Chip; 2007 Jul; 7(7):890-7. PubMed ID: 17594009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct electrochemical immunoassay based on immobilization of protein-magnetic nanoparticle composites on to magnetic electrode surfaces by sterically enhanced magnetic field force.
    Tang D; Yuan R; Chai Y
    Biotechnol Lett; 2006 Apr; 28(8):559-65. PubMed ID: 16614893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential injection chemiluminescence immunoassay for nonionic surfactants by using magnetic microbeads.
    Zhang R; Nakajima H; Soh N; Nakano K; Masadome T; Nagata K; Sakamoto K; Imato T
    Anal Chim Acta; 2007 Sep; 600(1-2):105-13. PubMed ID: 17903471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid, femtomolar bioassays in complex matrices combining microfluidics and magnetoelectronics.
    Mulvaney SP; Cole CL; Kniller MD; Malito M; Tamanaha CR; Rife JC; Stanton MW; Whitman LJ
    Biosens Bioelectron; 2007 Sep; 23(2):191-200. PubMed ID: 17532619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplexed, waveguide approach to magnetically assisted transport evanescent field fluoroassays.
    Wellman AD; Sepaniak MJ
    Anal Chem; 2007 Sep; 79(17):6622-8. PubMed ID: 17672480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel dome-shaped structures for high-efficiency patterning of individual microbeads in a microfluidic device.
    Lim CT; Zhang Y
    Small; 2007 Apr; 3(4):573-9. PubMed ID: 17351990
    [No Abstract]   [Full Text] [Related]  

  • 20. Rapid and separation-free sandwich immunosensing based on accumulation of microbeads by negative-dielectrophoresis.
    Lee HJ; Yasukawa T; Shiku H; Matsue T
    Biosens Bioelectron; 2008 Dec; 24(4):1006-11. PubMed ID: 18815023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.