BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 15915262)

  • 1. Behaviour and design considerations for continuous flow closed-open-closed liquid microchannels.
    Melin J; van der Wijngaart W; Stemme G
    Lab Chip; 2005 Jun; 5(6):682-6. PubMed ID: 15915262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micropumping of liquid by directional growth and selective venting of gas bubbles.
    Meng DD; Kim CJ
    Lab Chip; 2008 Jun; 8(6):958-68. PubMed ID: 18497918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio.
    Hattori K; Sugiura S; Kanamori T
    Lab Chip; 2009 Jun; 9(12):1763-72. PubMed ID: 19495461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional multihelical microfluidic mixers for rapid mixing of liquids.
    Verma MK; Ganneboyina SR; R VR; Ghatak A
    Langmuir; 2008 Mar; 24(5):2248-51. PubMed ID: 18197716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The deformation of flexible PDMS microchannels under a pressure driven flow.
    Hardy BS; Uechi K; Zhen J; Pirouz Kavehpour H
    Lab Chip; 2009 Apr; 9(7):935-8. PubMed ID: 19294304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A micromachined interface for airborne sample-to-liquid transfer and its application in a biosensor system.
    Frisk T; Rönnholm D; van der Wijngaart W; Stemme G
    Lab Chip; 2006 Dec; 6(12):1504-9. PubMed ID: 17203153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active control of the depletion boundary layers in microfluidic electrochemical reactors.
    Yoon SK; Fichtl GW; Kenis PJ
    Lab Chip; 2006 Dec; 6(12):1516-24. PubMed ID: 17203155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous flow in open microfluidics using controlled evaporation.
    Zimmermann M; Bentley S; Schmid H; Hunziker P; Delamarche E
    Lab Chip; 2005 Dec; 5(12):1355-9. PubMed ID: 16286965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a recursively-structured valveless device for microfluidic manipulation.
    Chung YC; Jen CP; Lin YC; Wu CY; Wu TC
    Lab Chip; 2003 Aug; 3(3):168-72. PubMed ID: 15100769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow rate analysis of a surface tension driven passive micropump.
    Berthier E; Beebe DJ
    Lab Chip; 2007 Nov; 7(11):1475-8. PubMed ID: 17960274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic sensor for dynamic surface tension measurement.
    Nguyen NT; Lassemono S; Chollet FA; Yang C
    IEE Proc Nanobiotechnol; 2006 Aug; 153(4):102-6. PubMed ID: 16948493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leveraging liquid dielectrophoresis for microfluidic applications.
    Chugh D; Kaler KV
    Biomed Mater; 2008 Sep; 3(3):034009. PubMed ID: 18708707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electrochemically driven poly(dimethylsiloxane) microfluidic actuator: oxygen sensing and programmable flows and pH gradients.
    Mitrovski SM; Nuzzo RG
    Lab Chip; 2005 Jun; 5(6):634-45. PubMed ID: 15915256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium silicate based sol-gel structures for generating pressure-driven flow in microfluidic channels.
    Toh GM; Corcoran RC; Dutta D
    J Chromatogr A; 2010 Jul; 1217(30):5004-11. PubMed ID: 20554290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a membrane-based gradient generator for use in cell-signaling studies.
    Abhyankar VV; Lokuta MA; Huttenlocher A; Beebe DJ
    Lab Chip; 2006 Mar; 6(3):389-93. PubMed ID: 16511622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and characterization of poly(methyl methacrylate) microchannels by in situ polymerization with a novel metal template.
    Chen Z; Gao Y; Su R; Li C; Lin J
    Electrophoresis; 2003 Sep; 24(18):3246-52. PubMed ID: 14518052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.