These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15916539)

  • 1. Assays for the RNA chaperone activity of proteins.
    Rajkowitsch L; Semrad K; Mayer O; Schroeder R
    Biochem Soc Trans; 2005 Jun; 33(Pt 3):450-6. PubMed ID: 15916539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assaying RNA chaperone activity in vivo in bacteria using a ribozyme folding trap.
    Prenninger S; Schroeder R; Semrad K
    Nat Protoc; 2006; 1(3):1273-7. PubMed ID: 17406411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assaying RNA chaperone activity in vivo using a novel RNA folding trap.
    Clodi E; Semrad K; Schroeder R
    EMBO J; 1999 Jul; 18(13):3776-82. PubMed ID: 10393192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity.
    Halls C; Mohr S; Del Campo M; Yang Q; Jankowsky E; Lambowitz AM
    J Mol Biol; 2007 Jan; 365(3):835-55. PubMed ID: 17081564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA chaperone activity of translation initiation factor IF1.
    Croitoru V; Semrad K; Prenninger S; Rajkowitsch L; Vejen M; Laursen BS; Sperling-Petersen HU; Isaksson LA
    Biochimie; 2006 Dec; 88(12):1875-82. PubMed ID: 16938378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A collapsed state functions to self-chaperone RNA folding into a native ribonucleoprotein complex.
    Webb AE; Weeks KM
    Nat Struct Biol; 2001 Feb; 8(2):135-40. PubMed ID: 11175902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of RNA chaperone activity in vivo and in vitro using misfolded group I ribozymes.
    Semrad K
    Methods Mol Biol; 2014; 1086():239-54. PubMed ID: 24136608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of a tyrosyl-tRNA synthetase splicing factor bound to a group I intron RNA.
    Paukstelis PJ; Chen JH; Chase E; Lambowitz AM; Golden BL
    Nature; 2008 Jan; 451(7174):94-7. PubMed ID: 18172503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Group II introns: structure, folding and splicing mechanism.
    Fedorova O; Zingler N
    Biol Chem; 2007 Jul; 388(7):665-78. PubMed ID: 17570818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the RNA chaperone activity of recombinant human tumor necrosis factor alpha in vitro.
    Cao G; Yang G; Liu Z; Liu X; Zhang J; Zhang D; Liu N; Ding H; Fan M; Shen B; Shao N
    Biochem Biophys Res Commun; 2005 Mar; 328(2):573-9. PubMed ID: 15694386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of RNA structural stability on the RNA chaperone activity of the Escherichia coli protein StpA.
    Grossberger R; Mayer O; Waldsich C; Semrad K; Urschitz S; Schroeder R
    Nucleic Acids Res; 2005; 33(7):2280-9. PubMed ID: 15849314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA chaperone StpA loosens interactions of the tertiary structure in the td group I intron in vivo.
    Waldsich C; Grossberger R; Schroeder R
    Genes Dev; 2002 Sep; 16(17):2300-12. PubMed ID: 12208852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulating the splicing activity of Tetrahymena ribozyme via RNA self-assembly.
    Hasegawa S; Rao J
    FEBS Lett; 2006 Mar; 580(6):1592-6. PubMed ID: 16472807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic characterization of the first step of the ribozyme-catalyzed trans excision-splicing reaction.
    Dotson PP; Sinha J; Testa SM
    FEBS J; 2008 Jun; 275(12):3110-22. PubMed ID: 18479464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ribozyme core of group II introns: a structure in want of partners.
    Michel F; Costa M; Westhof E
    Trends Biochem Sci; 2009 Apr; 34(4):189-99. PubMed ID: 19299141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trans insertion-splicing: ribozyme-catalyzed insertion of targeted sequences into RNAs.
    Johnson AK; Sinha J; Testa SM
    Biochemistry; 2005 Aug; 44(31):10702-10. PubMed ID: 16060679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA chaperone activity and RNA-binding properties of the E. coli protein StpA.
    Mayer O; Rajkowitsch L; Lorenz C; Konrat R; Schroeder R
    Nucleic Acids Res; 2007; 35(4):1257-69. PubMed ID: 17267410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Janus chaperones: assistance of both RNA- and protein-folding by ribosomal proteins.
    Kovacs D; Rakacs M; Agoston B; Lenkey K; Semrad K; Schroeder R; Tompa P
    FEBS Lett; 2009 Jan; 583(1):88-92. PubMed ID: 19071121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unusual metal specificity and structure of the group I ribozyme from Chlamydomonas reinhardtii 23S rRNA.
    Kuo TC; Odom OW; Herrin DL
    FEBS J; 2006 Jun; 273(12):2631-44. PubMed ID: 16817892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Escherichia coli proteins, including ribosomal protein S12, facilitate in vitro splicing of phage T4 introns by acting as RNA chaperones.
    Coetzee T; Herschlag D; Belfort M
    Genes Dev; 1994 Jul; 8(13):1575-88. PubMed ID: 7958841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.