BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 15916889)

  • 41. Development in modeling submicron particle formation in two phases flow of solvent-supercritical antisolvent emulsion.
    Dukhin SS; Shen Y; Dave R; Pfeffer R
    Adv Colloid Interface Sci; 2007 Oct; 134-135():72-88. PubMed ID: 17568550
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Design and optimization of a new self-nanoemulsifying drug delivery system.
    Wang L; Dong J; Chen J; Eastoe J; Li X
    J Colloid Interface Sci; 2009 Feb; 330(2):443-8. PubMed ID: 19038395
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Study of the preparation of sustained-release microspheres containing zedoary turmeric oil by the emulsion-solvent-diffusion method and evaluation of the self-emulsification and bioavailability of the oil.
    You J; Cui FD; Han X; Wang YS; Yang L; Yu YW; Li QP
    Colloids Surf B Biointerfaces; 2006 Mar; 48(1):35-41. PubMed ID: 16480856
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oil-in-oil microencapsulation technique with an external perfluorohexane phase.
    Mana Z; Pellequer Y; Lamprecht A
    Int J Pharm; 2007 Jun; 338(1-2):231-7. PubMed ID: 17368983
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanostructured microspheres produced by supercritical fluid extraction of emulsions.
    Della Porta G; Reverchon E
    Biotechnol Bioeng; 2008 Aug; 100(5):1020-33. PubMed ID: 18383122
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) nanoparticles for local delivery of paclitaxel for restenosis treatment.
    Westedt U; Kalinowski M; Wittmar M; Merdan T; Unger F; Fuchs J; Schäller S; Bakowsky U; Kissel T
    J Control Release; 2007 May; 119(1):41-51. PubMed ID: 17346845
    [TBL] [Abstract][Full Text] [Related]  

  • 47. PLGA-based drug delivery systems: importance of the type of drug and device geometry.
    Klose D; Siepmann F; Elkharraz K; Siepmann J
    Int J Pharm; 2008 Apr; 354(1-2):95-103. PubMed ID: 18055140
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preparation of an alternative freeze-dried pH-sensitive cyclosporine A loaded nanoparticles formulation and its pharmacokinetic profile in rats.
    Yang ZQ; Xu J; Pan P; Zhang XN
    Pharmazie; 2009 Jan; 64(1):26-31. PubMed ID: 19216227
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ibuprofen-loaded nanoparticles prepared by a co-precipitation method and their release properties.
    Jiang B; Hu L; Gao C; Shen J
    Int J Pharm; 2005 Nov; 304(1-2):220-30. PubMed ID: 16182477
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrohydrodynamic atomization for biodegradable polymeric particle production.
    Xie J; Lim LK; Phua Y; Hua J; Wang CH
    J Colloid Interface Sci; 2006 Oct; 302(1):103-12. PubMed ID: 16842810
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Solid lipid nanoparticles prepared by solvent diffusion method in a nanoreactor system.
    Yuan H; Huang LF; Du YZ; Ying XY; You J; Hu FQ; Zeng S
    Colloids Surf B Biointerfaces; 2008 Feb; 61(2):132-7. PubMed ID: 17888636
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs.
    Kocbek P; Baumgartner S; Kristl J
    Int J Pharm; 2006 Apr; 312(1-2):179-86. PubMed ID: 16469459
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives.
    Mundargi RC; Babu VR; Rangaswamy V; Patel P; Aminabhavi TM
    J Control Release; 2008 Feb; 125(3):193-209. PubMed ID: 18083265
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Formation of polymer microrods in shear flow by emulsification--solvent attrition mechanism.
    Alargova RG; Paunov VN; Velev OD
    Langmuir; 2006 Jan; 22(2):765-74. PubMed ID: 16401129
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery.
    Kim DH; Martin DC
    Biomaterials; 2006 May; 27(15):3031-7. PubMed ID: 16443270
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydrogel nanoparticles in drug delivery.
    Hamidi M; Azadi A; Rafiei P
    Adv Drug Deliv Rev; 2008 Dec; 60(15):1638-49. PubMed ID: 18840488
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin.
    Liu Y; Tong Z; Prud'homme RK
    Pest Manag Sci; 2008 Aug; 64(8):808-12. PubMed ID: 18366056
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of the introduction of a solubility enhancer on the formulation of lipidic nanoparticles with improved drug loading rates.
    Malzert-Fréon A; Saint-Lorant G; Hennequin D; Gauduchon P; Poulain L; Rault S
    Eur J Pharm Biopharm; 2010 Jun; 75(2):117-27. PubMed ID: 20144710
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Polymeric nanoparticles composed of fatty acids and polyvinylalcohol for topical application of sunscreens.
    Luppi B; Cerchiara T; Bigucci F; Basile R; Zecchi V
    J Pharm Pharmacol; 2004 Mar; 56(3):407-11. PubMed ID: 15025868
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Impact of process parameters in the generation of novel aspirin nanoemulsions--comparative studies between ultrasound cavitation and microfluidizer.
    Tang SY; Shridharan P; Sivakumar M
    Ultrason Sonochem; 2013 Jan; 20(1):485-97. PubMed ID: 22633626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.