BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 15917696)

  • 1. Fluorescence in situ hybridization (FISH) evaluation of chromosomes 6, 7, 9 and 10 throughout human melanocytic tumorigenesis.
    Casorzo L; Luzzi C; Nardacchione A; Picciotto F; Pisacane A; Risio M
    Melanoma Res; 2005 Jun; 15(3):155-60. PubMed ID: 15917696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular alterations at chromosome 9p21 in melanocytic naevi and melanoma.
    Sini MC; Manca A; Cossu A; Budroni M; Botti G; Ascierto PA; Cremona F; Muggiano A; D'Atri S; Casula M; Baldinu P; Palomba G; Lissia A; Tanda F; Palmieri G
    Br J Dermatol; 2008 Feb; 158(2):243-50. PubMed ID: 18028495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interphase cytogenetic demonstration of chromosome 9 loss in thick melanomas.
    Wolfe KQ; Southern SA; Herrington CS
    J Cutan Pathol; 1997 Aug; 24(7):398-402. PubMed ID: 9274956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melanoma ex naevo: a study of the associated naevus.
    Bogdan I; Smolle J; Kerl H; Burg G; Böni R
    Melanoma Res; 2003 Apr; 13(2):213-7. PubMed ID: 12690309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of numerical chromosomal aberrations in malignant melanomas using fluorescence in situ hybridization.
    Matsuta M; Imamura Y; Matsuta M; Sasaki K; Kon S
    J Cutan Pathol; 1997 Apr; 24(4):201-5. PubMed ID: 9138109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allelotypes of primary cutaneous melanoma and benign melanocytic nevi.
    Healy E; Belgaid CE; Takata M; Vahlquist A; Rehman I; Rigby H; Rees JL
    Cancer Res; 1996 Feb; 56(3):589-93. PubMed ID: 8564976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-density genome array is superior to fluorescence in-situ hybridization analysis of monosomy 3 in choroidal melanoma fine needle aspiration biopsy.
    Young TA; Burgess BL; Rao NP; Gorin MB; Straatsma BR
    Mol Vis; 2007 Dec; 13():2328-33. PubMed ID: 18199974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proliferation indices correlate with diagnosis and metastasis in diagnostically challenging melanocytic tumors.
    Al-Rohil RN; Curry JL; Torres-Cabala CA; Nagarajan P; Ivan D; Aung PP; Lyons GF; Bassett RL; Prieto VG; Tetzlaff MT
    Hum Pathol; 2016 Jul; 53():73-81. PubMed ID: 27004944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uveal melanocytomas: genetic comparison with uveal and dermal melanomas.
    Fogt F; Selim AM; Xu GX; Prinz MK; Eagle RC; Budimlija ZM
    Arch Ophthalmol; 2005 Mar; 123(3):377-80. PubMed ID: 15767481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genetic model of melanoma tumorigenesis based on allelic losses.
    Walker GJ; Palmer JM; Walters MK; Hayward NK
    Genes Chromosomes Cancer; 1995 Feb; 12(2):134-41. PubMed ID: 7535086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnosis of cutaneous melanocytic tumours by four-colour fluorescence in situ hybridisation.
    Morey AL; Murali R; McCarthy SW; Mann GJ; Scolyer RA
    Pathology; 2009; 41(4):383-7. PubMed ID: 19404853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced detection of spitzoid melanomas using fluorescence in situ hybridization with 9p21 as an adjunctive probe.
    Gammon B; Beilfuss B; Guitart J; Gerami P
    Am J Surg Pathol; 2012 Jan; 36(1):81-8. PubMed ID: 21989344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interphase cytogenetics of melanocytic neoplasms: numerical aberrations of chromosomes can be detected in interphase nuclei using centromeric DNA probes.
    Matsuta M; Matsuta M; Kon S; Thompson C; LeBoit PE; Weier HU; Gray JW
    J Cutan Pathol; 1994 Feb; 21(1):1-6. PubMed ID: 8188929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple complementary transcripts of pCMa1, a novel gene located at chromosome 11p15.1-2, and melanocytic cell transformation.
    Meije CB; Das PK; Jans MM; Hau C; van der Wal AC; Alders M; Hakvoort TB; Weidle UH; Lamers WH; Swart GW
    J Pathol; 2002 Aug; 197(5):668-76. PubMed ID: 12210088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence in situ hybridization analysis of atypical melanocytic proliferations and melanoma in young patients.
    DeMarchis EH; Swetter SM; Jennings CD; Kim J
    Pediatr Dermatol; 2014; 31(5):561-9. PubMed ID: 24924836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytogenetics of human malignant melanoma and premalignant lesions.
    Balaban G; Herlyn M; Guerry D; Bartolo R; Koprowski H; Clark WH; Nowell PC
    Cancer Genet Cytogenet; 1984 Apr; 11(4):429-39. PubMed ID: 6584203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation between Spitz nevi and malignant melanomas by interphase fluorescence in situ hybridization.
    Wettengel GV; Draeger J; Kiesewetter F; Schell H; Neubauer S; Gebhart E
    Int J Oncol; 1999 Jun; 14(6):1177-83. PubMed ID: 10339676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classifying melanocytic tumors based on DNA copy number changes.
    Bastian BC; Olshen AB; LeBoit PE; Pinkel D
    Am J Pathol; 2003 Nov; 163(5):1765-70. PubMed ID: 14578177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presence of cytogenetic abnormalities in Spitz naevi: a diagnostic challenge for fluorescence in-situ hybridization analysis.
    Martin V; Banfi S; Bordoni A; Leoni-Parvex S; Mazzucchelli L
    Histopathology; 2012 Jan; 60(2):336-46. PubMed ID: 22211292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liver metastatic ability of human melanoma cell line is associated with losses of chromosomes 4, 9p21-pter and 10p.
    Adám Z; Adány R; Ladányi A; Tímár J; Balázs M
    Clin Exp Metastasis; 2000; 18(4):295-302. PubMed ID: 11448059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.