These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 15917893)
1. Generation of peroxynitrite from reaction of N-acetyl-N-nitrosotryptophan with hydrogen peroxide over a wide range of pH values. Kirsch M; Lehnig M Org Biomol Chem; 2005 Jun; 3(11):2085-90. PubMed ID: 15917893 [TBL] [Abstract][Full Text] [Related]
2. 15N chemically induced dynamic nuclear polarization during reaction of N-acetyl-L-tyrosine with the nitrating systems nitrite/hydrogen peroxide/horseradish peroxidase and nitrite/hypochloric acid. Lehnig M Arch Biochem Biophys; 2001 Sep; 393(2):245-54. PubMed ID: 11556811 [TBL] [Abstract][Full Text] [Related]
3. 15N-CIDNP investigations during tryptophan, N-acetyl-L-tryptophan, and melatonin nitration with reactive nitrogen species. Lehnig M; Kirsch M Free Radic Res; 2007 May; 41(5):523-35. PubMed ID: 17454135 [TBL] [Abstract][Full Text] [Related]
4. On the mechanism of the ascorbic acid-induced release of nitric oxide from N-nitrosated tryptophan derivatives: scavenging of NO by ascorbyl radicals. Kytzia A; Korth HG; Sustmann R; de Groot H; Kirsch M Chemistry; 2006 Nov; 12(34):8786-97. PubMed ID: 16952125 [TBL] [Abstract][Full Text] [Related]
5. 15N CIDNP study of formation and decay of peroxynitric acid: evidence for formation of hydroxyl radicals. Lehnig M; Kirsch M; Korth HG Inorg Chem; 2003 Jul; 42(14):4275-87. PubMed ID: 12844299 [TBL] [Abstract][Full Text] [Related]
6. First insights into regiospecific transnitrosation reactions between tryptophan derivatives: melatonin as an effective target. Kirsch M; de Groot H J Pineal Res; 2005 May; 38(4):247-53. PubMed ID: 15813901 [TBL] [Abstract][Full Text] [Related]
7. Radical mechanisms of the decomposition of peroxynitrite and the peroxynitrite-CO(2) adduct and of reactions with L-tyrosine and related compounds as studied by (15)N chemically induced dynamic nuclear polarization. Lehnig M Arch Biochem Biophys; 1999 Aug; 368(2):303-18. PubMed ID: 10441382 [TBL] [Abstract][Full Text] [Related]
8. Reaction of vitamin E compounds with N-nitrosated tryptophan derivatives and its analytical use. Müller K; Korth HG; de Groot H; Kirsch M Chemistry; 2007; 13(26):7532-42. PubMed ID: 17611948 [TBL] [Abstract][Full Text] [Related]
9. Catecholamine-induced release of nitric oxide from N-nitrosotryptophan derivatives: a non-enzymatic method for catecholamine oxidation. Kytzia A; Korth HG; de Groot H; Kirsch M Org Biomol Chem; 2006 Jan; 4(2):257-67. PubMed ID: 16391768 [TBL] [Abstract][Full Text] [Related]
10. Nitrosation by peroxynitrite: use of phenol as a probe. Uppu RM; Lemercier JN; Squadrito GL; Zhang H; Bolzan RM; Pryor WA Arch Biochem Biophys; 1998 Oct; 358(1):1-16. PubMed ID: 9750159 [TBL] [Abstract][Full Text] [Related]
11. Direct evidence of singlet molecular oxygen generation from peroxynitrate, a decomposition product of peroxynitrite. Miyamoto S; Ronsein GE; Corrêa TC; Martinez GR; Medeiros MH; Di Mascio P Dalton Trans; 2009 Aug; (29):5720-9. PubMed ID: 20449086 [TBL] [Abstract][Full Text] [Related]
12. Inactivation of human Cu,Zn superoxide dismutase by peroxynitrite and formation of histidinyl radical. Alvarez B; Demicheli V; Durán R; Trujillo M; Cerveñansky C; Freeman BA; Radi R Free Radic Biol Med; 2004 Sep; 37(6):813-22. PubMed ID: 15304256 [TBL] [Abstract][Full Text] [Related]
13. Nitrated and oxidized products of a single tryptophan residue in human Cu,Zn-superoxide dismutase treated with either peroxynitrite-carbon dioxide or myeloperoxidase-hydrogen peroxide-nitrite. Yamakura F; Matsumoto T; Ikeda K; Taka H; Fujimura T; Murayama K; Watanabe E; Tamaki M; Imai T; Takamori K J Biochem; 2005 Jul; 138(1):57-69. PubMed ID: 16046449 [TBL] [Abstract][Full Text] [Related]
14. Melatonin nitrosation promoted by NO*2; comparison with the peroxynitrite reaction. Peyrot F; Houée-Levin C; Ducrocq C Free Radic Res; 2006 Sep; 40(9):910-20. PubMed ID: 17015270 [TBL] [Abstract][Full Text] [Related]
15. Acceleration of peroxynitrite oxidations by carbon dioxide. Uppu RM; Squadrito GL; Pryor WA Arch Biochem Biophys; 1996 Mar; 327(2):335-43. PubMed ID: 8619624 [TBL] [Abstract][Full Text] [Related]
16. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide. Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946 [TBL] [Abstract][Full Text] [Related]
17. Acetyl radical production by the methylglyoxal-peroxynitrite system: a possible route for L-lysine acetylation. Massari J; Tokikawa R; Zanolli L; Tavares MF; Assunção NA; Bechara EJ Chem Res Toxicol; 2010 Nov; 23(11):1762-70. PubMed ID: 20923167 [TBL] [Abstract][Full Text] [Related]
18. Reaction of a copper(II)-nitrosyl complex with hydrogen peroxide: putative formation of a copper(I)-peroxynitrite intermediate. Kalita A; Kumar P; Mondal B Chem Commun (Camb); 2012 May; 48(38):4636-8. PubMed ID: 22466785 [TBL] [Abstract][Full Text] [Related]
19. GC-MS and HPLC methods for peroxynitrite (ONOO- and O15NOO-) analysis: a study on stability, decomposition to nitrite and nitrate, laboratory synthesis, and formation of peroxynitrite from S-nitrosoglutathione (GSNO) and KO2. Tsikas D Analyst; 2011 Mar; 136(5):979-87. PubMed ID: 21173958 [TBL] [Abstract][Full Text] [Related]
20. Formation of N-nitrosamines and N-nitramines by the reaction of secondary amines with peroxynitrite and other reactive nitrogen species: comparison with nitrotyrosine formation. Masuda M; Mower HF; Pignatelli B; Celan I; Friesen MD; Nishino H; Ohshima H Chem Res Toxicol; 2000 Apr; 13(4):301-8. PubMed ID: 10775331 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]