BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 15917906)

  • 21. Hypoxia-selective antitumor agents. 13. Effects of acridine substitution on the hypoxia-selective cytotoxicity and metabolic reduction of the bis-bioreductive agent nitracrine N-oxide.
    Lee HH; Wilson WR; Ferry DM; van Zijl P; Pullen SM; Denny WA
    J Med Chem; 1996 Jun; 39(13):2508-17. PubMed ID: 8691448
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tirapazamine: hypoxic cytotoxicity and interaction with radiation as assessed by the micronucleus assay.
    Shibata T; Shibamoto Y; Sasai K; Oya N; Murata R; Takagi T; Hiraoka M; Takahashi M; Abe M
    Br J Cancer Suppl; 1996 Jul; 27():S61-4. PubMed ID: 8763848
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 1,2,4-Benzotriazine 1,4-dioxides. An important class of hypoxic cytotoxins with antitumor activity.
    Kelson AB; McNamara JP; Pandey A; Ryan KJ; Dorie MJ; McAfee PA; Menke DR; Brown JM; Tracy M
    Anticancer Drug Des; 1998 Sep; 13(6):575-92. PubMed ID: 9755719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolism of SR 4233 by Chinese hamster ovary cells: basis of selective hypoxic cytotoxicity.
    Baker MA; Zeman EM; Hirst VK; Brown JM
    Cancer Res; 1988 Nov; 48(21):5947-52. PubMed ID: 3167847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hypoxia-selective agents derived from quinoxaline 1,4-di-N-oxides.
    Monge A; Palop JA; López de Ceráin A; Senador V; Martínez-Crespo FJ; Sainz Y; Narro S; García E; de Miguel C; González M
    J Med Chem; 1995 May; 38(10):1786-92. PubMed ID: 7752202
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 1, 2, 4-Triazine N-oxide derivatives: studies as potential hypoxic cytotoxins. Part III.
    Cerecetto H; González M; Risso M; Saenz P; Olea-Azar C; Bruno AM; Azqueta A; De Ceráin AL; Monge A
    Arch Pharm (Weinheim); 2004 May; 337(5):271-80. PubMed ID: 15095420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward hypoxia-selective DNA-alkylating agents built by grafting nitrogen mustards onto the bioreductively activated, hypoxia-selective DNA-oxidizing agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine).
    Johnson KM; Parsons ZD; Barnes CL; Gates KS
    J Org Chem; 2014 Aug; 79(16):7520-31. PubMed ID: 25029663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A mass spectrometry study of tirapazamine and its metabolites. insights into the mechanism of metabolic transformations and the characterization of reaction intermediates.
    Zagorevskii D; Song M; Breneman C; Yuan Y; Fuchs T; Gates KS; Greenlief CM
    J Am Soc Mass Spectrom; 2003 Aug; 14(8):881-92. PubMed ID: 12892912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitracrine N-oxides: effects of variations in the nature of the side chain N-oxide on hypoxia-selective cytotoxicity.
    Lee HH; Wilson WR; Denny WA
    Anticancer Drug Des; 1999 Dec; 14(6):487-97. PubMed ID: 10834270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancement of the antitumor effect of flavone acetic acid by the bioreductive cytotoxic drug SR 4233 in a murine carcinoma.
    Sun JR; Brown JM
    Cancer Res; 1989 Oct; 49(20):5664-70. PubMed ID: 2790784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptation of human tumor cells to tirapazamine under aerobic conditions: implications of increased antioxidant enzyme activity to mechanism of aerobic cytotoxicity.
    Elwell JH; Siim BG; Evans JW; Brown JM
    Biochem Pharmacol; 1997 Jul; 54(2):249-57. PubMed ID: 9271329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioreductive agents: a clinical update.
    Boyer MJ
    Oncol Res; 1997; 9(6-7):391-5. PubMed ID: 9406245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SR 4233 (tirapazamine): a new anticancer drug exploiting hypoxia in solid tumours.
    Brown JM
    Br J Cancer; 1993 Jun; 67(6):1163-70. PubMed ID: 8512801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular mechanisms for the hypoxia-dependent activation of 3-amino-1,2,4-benzotriazine-1,4-dioxide (SR 4233).
    Laderoute K; Wardman P; Rauth AM
    Biochem Pharmacol; 1988 Apr; 37(8):1487-95. PubMed ID: 3128984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measurement of delivery and metabolism of tirapazamine to tumour tissue using the multilayered cell culture model.
    Kyle AH; Minchinton AI
    Cancer Chemother Pharmacol; 1999; 43(3):213-20. PubMed ID: 9923551
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tirapazamine is metabolized to its DNA-damaging radical by intranuclear enzymes.
    Evans JW; Yudoh K; Delahoussaye YM; Brown JM
    Cancer Res; 1998 May; 58(10):2098-101. PubMed ID: 9605751
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemical studies of tirapazamine: generation of the one-electron reduction product.
    Tocher JH; Edwards DI
    Free Radic Res; 1994 Oct; 21(5):277-83. PubMed ID: 7842137
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multicellular resistance to tirapazamine is due to restricted extravascular transport: a pharmacokinetic/pharmacodynamic study in HT29 multicellular layer cultures.
    Hicks KO; Pruijn FB; Sturman JR; Denny WA; Wilson WR
    Cancer Res; 2003 Sep; 63(18):5970-7. PubMed ID: 14522924
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct evidence for bimodal DNA damage induced by tirapazamine.
    Daniels JS; Gates KS; Tronche C; Greenberg MM
    Chem Res Toxicol; 1998 Nov; 11(11):1254-7. PubMed ID: 9815184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-activity relationships for benzotriazine di-N-oxides.
    Zeman EM; Baker MA; Lemmon MJ; Pearson CI; Adams JA; Brown JM; Lee WW; Tracy M
    Int J Radiat Oncol Biol Phys; 1989 Apr; 16(4):977-81. PubMed ID: 2703405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.