These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 15918693)
1. Gradient-based direct normal-mode analysis. Kaledin AL J Chem Phys; 2005 May; 122(18):184106. PubMed ID: 15918693 [TBL] [Abstract][Full Text] [Related]
2. All-Atom Calculation of the Normal Modes of Bacteriorhodopsin Using a Sliding Block Iterative Diagonalization Method. Kaledin AL; Kaledin M; Bowman JM J Chem Theory Comput; 2006 Jan; 2(1):166-74. PubMed ID: 26626391 [TBL] [Abstract][Full Text] [Related]
3. Comparison of methods for finding saddle points without knowledge of the final states. Olsen RA; Kroes GJ; Henkelman G; Arnaldsson A; Jónsson H J Chem Phys; 2004 Nov; 121(20):9776-92. PubMed ID: 15549851 [TBL] [Abstract][Full Text] [Related]
4. A density matrix-based method for the linear-scaling calculation of dynamic second- and third-order properties at the Hartree-Fock and Kohn-Sham density functional theory levels. Kussmann J; Ochsenfeld C J Chem Phys; 2007 Nov; 127(20):204103. PubMed ID: 18052415 [TBL] [Abstract][Full Text] [Related]
5. A finite difference Davidson procedure to sidestep full ab initio hessian calculation: application to characterization of stationary points and transition state searches. Sharada SM; Bell AT; Head-Gordon M J Chem Phys; 2014 Apr; 140(16):164115. PubMed ID: 24784261 [TBL] [Abstract][Full Text] [Related]
6. A Jacobi-Wilson description coupled to a block-Davidson algorithm: an efficient scheme to calculate highly excited vibrational levels. Ribeiro F; Iung C; Leforestier C J Chem Phys; 2005 Aug; 123(5):054106. PubMed ID: 16108630 [TBL] [Abstract][Full Text] [Related]
7. Extracting effective normal modes from equilibrium dynamics at finite temperature. Martinez M; Gaigeot MP; Borgis D; Vuilleumier R J Chem Phys; 2006 Oct; 125(14):144106. PubMed ID: 17042578 [TBL] [Abstract][Full Text] [Related]
8. Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory. Coriani S; Høst S; Jansík B; Thøgersen L; Olsen J; Jørgensen P; Reine S; Pawłowski F; Helgaker T; Sałek P J Chem Phys; 2007 Apr; 126(15):154108. PubMed ID: 17461615 [TBL] [Abstract][Full Text] [Related]
9. Finite basis representations with nondirect product basis functions having structure similar to that of spherical harmonics. Czakó G; Szalay V; Császár AG J Chem Phys; 2006 Jan; 124(1):14110. PubMed ID: 16409027 [TBL] [Abstract][Full Text] [Related]
11. Quantum solvation dynamics of HCN in a helium-4 droplet. Mikosz AA; Ramilowski JA; Farrelly D J Chem Phys; 2006 Jul; 125(1):014312. PubMed ID: 16863303 [TBL] [Abstract][Full Text] [Related]
12. Unification of algorithms for minimum mode optimization. Zeng Y; Xiao P; Henkelman G J Chem Phys; 2014 Jan; 140(4):044115. PubMed ID: 25669513 [TBL] [Abstract][Full Text] [Related]
13. Cholesky decomposition of the two-electron integral matrix in electronic structure calculations. Røeggen I; Johansen T J Chem Phys; 2008 May; 128(19):194107. PubMed ID: 18500856 [TBL] [Abstract][Full Text] [Related]
14. Full S matrix calculation via a single real-symmetric Lanczos recursion: the Lanczos artificial boundary inhomogeneity method. Zhang H; Smith SC J Chem Phys; 2004 Jan; 120(3):1161-3. PubMed ID: 15268237 [TBL] [Abstract][Full Text] [Related]
16. Rototranslational sum rules for electromagnetic hypershielding at the nuclei and related atomic Cartesian derivatives of the optical rotatory power. Liégeois V; Champagne B; Lazzeretti P J Chem Phys; 2008 Jun; 128(24):244107. PubMed ID: 18601317 [TBL] [Abstract][Full Text] [Related]
17. Quantum and electromagnetic propagation with the conjugate symmetric Lanczos method. Acevedo R; Lombardini R; Turner MA; Kinsey JL; Johnson BR J Chem Phys; 2008 Feb; 128(6):064103. PubMed ID: 18282024 [TBL] [Abstract][Full Text] [Related]
18. Wavelet formulation of the polarizable continuum model. Weijo V; Randrianarivony M; Harbrecht H; Frediani L J Comput Chem; 2010 May; 31(7):1469-77. PubMed ID: 19834886 [TBL] [Abstract][Full Text] [Related]
19. Molecular dissociation of hydrogen peroxide (HOOH) on a neural network ab initio potential surface with a new configuration sampling method involving gradient fitting. Le HM; Huynh S; Raff LM J Chem Phys; 2009 Jul; 131(1):014107. PubMed ID: 19586096 [TBL] [Abstract][Full Text] [Related]