These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 15918723)

  • 1. NMR paramagnetic relaxation due to the S=5/2 complex, Fe(III)-(tetra-p-sulfonatophenyl)porphyrin: central role of the tetragonal fourth-order zero-field splitting interaction.
    Schaefle N; Sharp R
    J Chem Phys; 2005 May; 122(18):184501. PubMed ID: 15918723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR paramagnetic relaxation of the spin 2 complex Mn(III)TSPP: a unique mechanism.
    Schaefle N; Sharp R
    J Phys Chem A; 2005 Apr; 109(15):3267-75. PubMed ID: 16833659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR-paramagnetic relaxation due to the high-spin d3 electron configuration: Cr(III)-TSPP.
    Schaefle N; Sharp R
    J Phys Chem A; 2005 Apr; 109(15):3276-84. PubMed ID: 16833660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of paramagnetic NMR relaxation produced by Mn(II): role of orthorhombic and fourth-order zero field splitting terms.
    Sharp R
    J Chem Phys; 2008 Oct; 129(14):144307. PubMed ID: 19045147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron spin relaxation due to reorientation of a permanent zero field splitting tensor.
    Schaefle N; Sharp R
    J Chem Phys; 2004 Sep; 121(11):5387-94. PubMed ID: 15352832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR paramagnetic relaxation enhancement: test of the controlling influence of zfs rhombicity for S = 1.
    Miller JC; Lohr LL; Sharp RR
    J Magn Reson; 2001 Feb; 148(2):267-76. PubMed ID: 11237632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Closed-form expressions for level-averaged electron spin relaxation times outside the Zeeman limit: application to paramagnetic NMR relaxation.
    Sharp R
    J Magn Reson; 2002 Feb; 154(2):269-79. PubMed ID: 11846584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paramagnetic proton nuclear spin relaxation theory of low-symmetry complexes for electron spin quantum number S = 52.
    Strandberg E; Westlund P
    J Magn Reson; 1999 Apr; 137(2):333-44. PubMed ID: 10089167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theoretical spin relaxation and molecular dynamics simulation study of the Gd(H2O)9(3+) complex.
    Lindgren M; Laaksonen A; Westlund PO
    Phys Chem Chem Phys; 2009 Nov; 11(44):10368-76. PubMed ID: 19890521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Four complementary theoretical approaches for the analysis of NMR paramagnetic relaxation.
    Schaefle N; Sharp R
    J Magn Reson; 2005 Oct; 176(2):160-70. PubMed ID: 16009586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear and electron spin relaxation in paramagnetic complexes in solution: effects of the quantum nature of molecular vibrations.
    Kruk D; Kowalewski J; Westlund PO
    J Chem Phys; 2004 Aug; 121(5):2215-27. PubMed ID: 15260776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow-motion theory of nuclear spin relaxation in paramagnetic low-symmetry complexes: A generalization to high electron spin.
    Nilsson T; Kowalewski J
    J Magn Reson; 2000 Oct; 146(2):345-58. PubMed ID: 11001850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-spin organometallic Fe-S compound: structural and Mössbauer spectroscopic studies of [phenyltris((tert-butylthio)methyl)borate]Fe(Me).
    Popescu CV; Mock MT; Stoian SA; Dougherty WG; Yap GP; Riordan CG
    Inorg Chem; 2009 Sep; 48(17):8317-24. PubMed ID: 19642622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR and EPR studies of low-spin Fe(III) complexes of meso-tetra-(2,6-disubstituted phenyl)porphyrinates complexed to imidazoles and pyridines of widely differing basicities.
    Watson CT; Cai S; Shokhirev NV; Walker FA
    Inorg Chem; 2005 Oct; 44(21):7468-84. PubMed ID: 16212373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic quantum tunneling: key insights from multi-dimensional high-field EPR.
    Lawrence J; Yang EC; Hendrickson DN; Hill S
    Phys Chem Chem Phys; 2009 Aug; 11(31):6743-9. PubMed ID: 19639148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of Gd(III)-based magnetic resonance imaging contrast agents: static and transient zero-field splitting contributions to the electronic relaxation and their impact on relaxivity.
    Benmelouka M; Borel A; Moriggi L; Helm L; Merbach AE
    J Phys Chem B; 2007 Feb; 111(4):832-40. PubMed ID: 17249827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of diisopropanolamine (dipaH3) in cluster dimerisation and polymerisation: from spin frustrated S= 5 FeIII 6 clusters to the novel 1-D covalent polymer of mixed valence [CoII3CoIII] tetramers.
    Jones LF; Jensen P; Moubaraki B; Cashion JD; Berry KJ; Murray KS
    Dalton Trans; 2005 Oct; (20):3344-52. PubMed ID: 16193153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-ion and molecular contributions to the zero-field splitting in an iron(III)-oxo dimer studied by single crystal W-band EPR.
    ter Heerdt P; Stefan M; Goovaerts E; Caneschi A; Cornia A
    J Magn Reson; 2006 Mar; 179(1):29-37. PubMed ID: 16325437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic Transitions in Iron Porphyrin Halides by Inelastic Neutron Scattering and Ab Initio Studies of Zero-Field Splittings.
    Stavretis SE; Atanasov M; Podlesnyak AA; Hunter SC; Neese F; Xue ZL
    Inorg Chem; 2015 Oct; 54(20):9790-801. PubMed ID: 26428688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron spin relaxation of N@C60 in CS2 in CS2.
    Morton JJ; Tyryshkin AM; Ardavan A; Porfyrakis K; Lyon SA; Andrew D Briggs G
    J Chem Phys; 2006 Jan; 124(1):14508. PubMed ID: 16409042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.