BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 15919057)

  • 21. A novel melatonin derivative modulates sleep-wake cycle in rats.
    Akanmu MA; Songkram C; Kagechika H; Honda K
    Neurosci Lett; 2004 Jul; 364(3):199-202. PubMed ID: 15196675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Orexin-2 receptors inhibit primary afferent fiber-evoked responses of ventral roots in the neonatal rat isolated spinal cord.
    Shono K; Yamamoto T
    Brain Res; 2008 Jul; 1218():97-102. PubMed ID: 18511021
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Orexin B/hypocretin 2 increases glutamatergic transmission to ventral tegmental area neurons.
    Borgland SL; Storm E; Bonci A
    Eur J Neurosci; 2008 Oct; 28(8):1545-56. PubMed ID: 18793323
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Orexins activate histaminergic neurons via the orexin 2 receptor.
    Yamanaka A; Tsujino N; Funahashi H; Honda K; Guan JL; Wang QP; Tominaga M; Goto K; Shioda S; Sakurai T
    Biochem Biophys Res Commun; 2002 Feb; 290(4):1237-45. PubMed ID: 11811995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spontaneous REM sleep is modulated by the activation of the pedunculopontine tegmental GABAB receptors in the freely moving rat.
    Ulloor J; Mavanji V; Saha S; Siwek DF; Datta S
    J Neurophysiol; 2004 Apr; 91(4):1822-31. PubMed ID: 14702336
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sleep-wakefulness effects after microinjections of hypocretin 1 (orexin A) in cholinoceptive areas of the cat oral pontine tegmentum.
    Moreno-Balandrán E; Garzón M; Bódalo C; Reinoso-Suárez F; de Andrés I
    Eur J Neurosci; 2008 Jul; 28(2):331-41. PubMed ID: 18702704
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Orexin-B-saporin lesions in the lateral hypothalamus enhance photic masking of rapid eye movement sleep in the albino rat.
    Ocampo-Garcés A; Ibáñez F; Perdomo G; Torrealba F
    J Sleep Res; 2011 Mar; 20(1 Pt 1):3-11. PubMed ID: 20626614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. REM sleep enhancement and behavioral cataplexy following orexin (hypocretin)-II receptor antisense perfusion in the pontine reticular formation.
    Thakkar MM; Ramesh V; Cape EG; Winston S; Strecker RE; McCarley RW
    Sleep Res Online; 1999; 2(4):112-20. PubMed ID: 11382892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arousal effect of orexin A depends on activation of the histaminergic system.
    Huang ZL; Qu WM; Li WD; Mochizuki T; Eguchi N; Watanabe T; Urade Y; Hayaishi O
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9965-70. PubMed ID: 11493714
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Orexins: from neuropeptides to energy homeostasis and sleep/wake regulation.
    Beuckmann CT; Yanagisawa M
    J Mol Med (Berl); 2002 Jun; 80(6):329-42. PubMed ID: 12072908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Requirement of intact disulfide bonds in orexin-A-induced stimulation of gastric acid secretion that is mediated by OX1 receptor activation.
    Okumura T; Takeuchi S; Motomura W; Yamada H; Egashira Si S; Asahi S; Kanatani A; Ihara M; Kohgo Y
    Biochem Biophys Res Commun; 2001 Feb; 280(4):976-81. PubMed ID: 11162621
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression pattern of FOS in orexin neurons during sleep induced by an adenosine A2A receptor agonist.
    Satoh S; Matsumura H; Kanbayashi T; Yoshida Y; Urakami T; Nakajima T; Kimura N; Nishino S; Yoneda H
    Behav Brain Res; 2006 Jun; 170(2):277-86. PubMed ID: 16621044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action.
    España RA; Baldo BA; Kelley AE; Berridge CW
    Neuroscience; 2001; 106(4):699-715. PubMed ID: 11682157
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Central administration of orexin A suppresses basal and domperidone stimulated plasma prolactin.
    Russell SH; Kim MS; Small CJ; Abbott CR; Morgan DG; Taheri S; Murphy KG; Todd JF; Ghatei MA; Bloom SR
    J Neuroendocrinol; 2000 Dec; 12(12):1213-8. PubMed ID: 11106980
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glutamic acid stimulation of the perifornical-lateral hypothalamic area promotes arousal and inhibits non-REM/REM sleep.
    Alam MA; Mallick BN
    Neurosci Lett; 2008 Jul; 439(3):281-6. PubMed ID: 18534750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuromedin U(2) receptor signaling mediates alteration of sleep-wake architecture in rats.
    Ahnaou A; Drinkenburg WH
    Neuropeptides; 2011 Apr; 45(2):165-74. PubMed ID: 21296417
    [TBL] [Abstract][Full Text] [Related]  

  • 37. To eat or to sleep? Orexin in the regulation of feeding and wakefulness.
    Willie JT; Chemelli RM; Sinton CM; Yanagisawa M
    Annu Rev Neurosci; 2001; 24():429-58. PubMed ID: 11283317
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse.
    Takahashi K; Lin JS; Sakai K
    Neuroscience; 2008 May; 153(3):860-70. PubMed ID: 18424001
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Endogenous neuropeptide S tone influences sleep-wake rhythm in rats.
    Oishi M; Kushikata T; Niwa H; Yakoshi C; Ogasawara C; Calo G; Guerrini R; Hirota K
    Neurosci Lett; 2014 Oct; 581():94-7. PubMed ID: 25161123
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Orexins and orexin receptors: from molecules to integrative physiology.
    Matsuki T; Sakurai T
    Results Probl Cell Differ; 2008; 46():27-55. PubMed ID: 18204827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.