BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 15919090)

  • 1. Functional interactions between the subunits of the lactose transporter from Streptococcus thermophilus.
    Geertsma ER; Duurkens RH; Poolman B
    J Mol Biol; 2005 Jul; 350(1):102-11. PubMed ID: 15919090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The lactose transport protein is a cooperative dimer with two sugar translocation pathways.
    Veenhoff LM; Heuberger EH; Poolman B
    EMBO J; 2001 Jun; 20(12):3056-62. PubMed ID: 11406582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The activity of the lactose transporter from Streptococcus thermophilus is increased by phosphorylated IIA and the action of beta-galactosidase.
    Geertsma ER; Duurkens RH; Poolman B
    Biochemistry; 2005 Dec; 44(48):15889-97. PubMed ID: 16313191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unidirectional reconstitution into detergent-destabilized liposomes of the purified lactose transport system of Streptococcus thermophilus.
    Knol J; Veenhoff L; Liang WJ; Henderson PJ; Leblanc G; Poolman B
    J Biol Chem; 1996 Jun; 271(26):15358-66. PubMed ID: 8662938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HPr(His approximately P)-mediated phosphorylation differently affects counterflow and proton motive force-driven uptake via the lactose transport protein of Streptococcus thermophilus.
    Gunnewijk MG; Poolman B
    J Biol Chem; 2000 Nov; 275(44):34080-5. PubMed ID: 10842178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oligomeric state of membrane transport proteins analyzed with blue native electrophoresis and analytical ultracentrifugation.
    Heuberger EH; Veenhoff LM; Duurkens RH; Friesen RH; Poolman B
    J Mol Biol; 2002 Apr; 317(4):591-600. PubMed ID: 11955011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C; Koebmann B; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the dimer interface of the lactose transport protein from Streptococcus thermophilus.
    Geertsma ER; Duurkens RH; Poolman B
    J Mol Biol; 2003 Oct; 332(5):1165-74. PubMed ID: 14499618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quaternary structure of the lactose transport protein of Streptococcus thermophilus in the detergent-solubilized and membrane-reconstituted state.
    Friesen RH; Knol J; Poolman B
    J Biol Chem; 2000 Oct; 275(43):33527-35. PubMed ID: 10921919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactose permease as a paradigm for membrane transport proteins (Review).
    Abramson J; Iwata S; Kaback HR
    Mol Membr Biol; 2004; 21(4):227-36. PubMed ID: 15371012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The TatA subunit of Escherichia coli twin-arginine translocase has an N-in topology.
    Chan CS; Zlomislic MR; Tieleman DP; Turner RJ
    Biochemistry; 2007 Jun; 46(25):7396-404. PubMed ID: 17536842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Cys-295 on subunit interactions and allosteric regulation of phosphofructokinase-2 from Escherichia coli.
    Caniuguir A; Cabrera R; Báez M; Vásquez CC; Babul J; Guixé V
    FEBS Lett; 2005 Apr; 579(11):2313-8. PubMed ID: 15848164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subunits of the yeast mitochondrial ADP/ATP carrier: cooperation within the dimer.
    Postis V; De Marcos Lousa C; Arnou B; Lauquin GJ; Trézéguet V
    Biochemistry; 2005 Nov; 44(45):14732-40. PubMed ID: 16274221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of a periplasmic substrate-binding protein in complex with calcium lactate.
    Akiyama N; Takeda K; Miki K
    J Mol Biol; 2009 Sep; 392(3):559-65. PubMed ID: 19631222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of K+, H+, H2O, and DeltaPsi in solute transport mediated by major facilitator superfamily members ProP and LacY.
    Culham DE; Romantsov T; Wood JM
    Biochemistry; 2008 Aug; 47(31):8176-85. PubMed ID: 18620422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible promoter regions within the proteolytic system in Streptococcus thermophilus and their interaction with the CodY homolog.
    Liu F; Du L; Du P; Huo G
    FEMS Microbiol Lett; 2009 Aug; 297(2):164-72. PubMed ID: 19552712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallographic structure of phosphofructokinase-2 from Escherichia coli in complex with two ATP molecules. Implications for substrate inhibition.
    Cabrera R; Ambrosio AL; Garratt RC; Guixé V; Babul J
    J Mol Biol; 2008 Nov; 383(3):588-602. PubMed ID: 18762190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. K+-translocating KdpFABC P-type ATPase from Escherichia coli acts as a functional and structural dimer.
    Heitkamp T; Kalinowski R; Böttcher B; Börsch M; Altendorf K; Greie JC
    Biochemistry; 2008 Mar; 47(11):3564-75. PubMed ID: 18298081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of a loose dimer: an intermediate in nitric oxide synthase assembly.
    Pant K; Crane BR
    J Mol Biol; 2005 Sep; 352(4):932-40. PubMed ID: 16126221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR structure of the Escherichia coli type 1 pilus subunit FimF and its interactions with other pilus subunits.
    Gossert AD; Bettendorff P; Puorger C; Vetsch M; Herrmann T; Glockshuber R; Wüthrich K
    J Mol Biol; 2008 Jan; 375(3):752-63. PubMed ID: 18048056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.