These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 159192)
1. Biological energy production in the apparent absence of electron transport and substrate level phosphorylation. Zehnder AJ; Brock TD FEBS Lett; 1979 Nov; 107(1):1-3. PubMed ID: 159192 [No Abstract] [Full Text] [Related]
2. Chemical and chemiosmotic aspects of electron transport-linked phosphorylation. Ernster L Annu Rev Biochem; 1977; 46():981-95. PubMed ID: 20042 [No Abstract] [Full Text] [Related]
3. Coupling mechanisms in capture, transmission, and use of energy. Annu Rev Biochem; 1977; 46():957-66. PubMed ID: 143237 [No Abstract] [Full Text] [Related]
4. Proton translocation mechanisms and energy transduction by adenosine triphosphatases: an answer to criticisms. Mitchell P FEBS Lett; 1975 Feb; 50(2):95-7. PubMed ID: 234404 [No Abstract] [Full Text] [Related]
5. A molecular mechanism of energy transduction at a cytochrome level. Marbach G; Vignais PM J Theor Biol; 1975 Oct; 54(2):335-43. PubMed ID: 128662 [No Abstract] [Full Text] [Related]
6. The unitary hypothesis on the coupling of energy transduction and its relevance to the modeling of mechanisms. Bennun A Ann N Y Acad Sci; 1974 Feb; 227():116-45. PubMed ID: 4275116 [No Abstract] [Full Text] [Related]
7. Mechanism of oxidative phosphorylation. Slater EC Annu Rev Biochem; 1977; 46():1015-26. PubMed ID: 20036 [No Abstract] [Full Text] [Related]
8. Mechanisms of energy transformations. Racker E Annu Rev Biochem; 1977; 46():1006-14. PubMed ID: 20035 [No Abstract] [Full Text] [Related]
9. Cooperativity in the inhibition of oxidative phosphorylation by chlorophenoxyisobutyrate. Panini SR; Kurup CK Biochim Biophys Acta; 1974 Oct; 368(1):29-38. PubMed ID: 4370957 [No Abstract] [Full Text] [Related]
11. Enzymic generators of membrane potential in mitochondria. Skulachev VP Ann N Y Acad Sci; 1974 Feb; 227():188-202. PubMed ID: 4363925 [No Abstract] [Full Text] [Related]
12. Some contemporary problems in electron-transport-linked adenosine triphosphate synthesis and related processes. Ferguson SJ Biochem Soc Trans; 1977; 5(2):582-8. PubMed ID: 143382 [No Abstract] [Full Text] [Related]
13. Energy coupling of the -methylgalactoside transport system of Escherichia coli. Parnes JR; Boos W J Biol Chem; 1973 Jun; 248(12):4429-35. PubMed ID: 4268122 [No Abstract] [Full Text] [Related]
14. The stoicheiometric relationships between electron transport, proton translocation and adenosine triphosphate synthesis and hydrolysis in mitochondria. Brand MD Biochem Soc Trans; 1977; 5(5):1615-20. PubMed ID: 21825 [No Abstract] [Full Text] [Related]
15. Bioenergetics and the problem of tumor growth. Racker E Am Sci; 1972; 60(1):56-63. PubMed ID: 4332766 [No Abstract] [Full Text] [Related]
16. The energetics of bacterial active transport. Simoni RD; Postma PW Annu Rev Biochem; 1975; 44():523-54. PubMed ID: 237462 [No Abstract] [Full Text] [Related]
17. Transmembrane electrochemical H+-potential as a convertible energy source for the living cell. Skulachev VP FEBS Lett; 1977 Feb; 74(1):1-9. PubMed ID: 14031 [No Abstract] [Full Text] [Related]
18. Energy transduction and proton translocation by adenosine triphosphatases. Boyer PD FEBS Lett; 1975 Feb; 50(2):91-4. PubMed ID: 122942 [No Abstract] [Full Text] [Related]
19. The proton-translocating pumps of oxidative phosphorylation. Fillingame RH Annu Rev Biochem; 1980; 49():1079-113. PubMed ID: 6157352 [No Abstract] [Full Text] [Related]
20. Energy transduction in chloroplasts: structure and function of the ATPase complex. Shavit N Annu Rev Biochem; 1980; 49():111-38. PubMed ID: 6447471 [No Abstract] [Full Text] [Related] [Next] [New Search]