BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 15919732)

  • 41. Effects of anoxia on energy metabolism in crucian carp brain slices studied with microcalorimetry.
    Johansson D; Nilsson G; TÖRnblom E
    J Exp Biol; 1995; 198(Pt 3):853-9. PubMed ID: 9318635
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Does anoxia induce cell swelling in carp brains? In vivo MRI measurements in crucian carp and common carp.
    Van der Linden A; Verhoye M; Nilsson GE
    J Neurophysiol; 2001 Jan; 85(1):125-33. PubMed ID: 11152713
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Combined effects of moderate hypoxia, pesticides and PCBs upon crucian carp fish, Carassius carassius, from a freshwater lake- in situ ecophysiological approach.
    Sula E; Aliko V; Barceló D; Faggio C
    Aquat Toxicol; 2020 Nov; 228():105644. PubMed ID: 33053460
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tissue-specific changes in protein synthesis rates in vivo during anoxia in crucian carp.
    Smith RW; Houlihan DF; Nilsson GE; Brechin JG
    Am J Physiol; 1996 Oct; 271(4 Pt 2):R897-904. PubMed ID: 8897979
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Decreased temperature as a signal for regulation of heat shock protein expression in anoxic brain and heart: focus on "Expression of heat shock proteins in anoxic crucian carp (Carassius carassius): support for cold as a preparatory cue for anoxia".
    Prentice HM
    Am J Physiol Regul Integr Comp Physiol; 2010 Jun; 298(6):R1496-8. PubMed ID: 20410473
    [No Abstract]   [Full Text] [Related]  

  • 46. Vertebrate brains at the pilot light.
    Lutz PL; Nilsson GE
    Respir Physiol Neurobiol; 2004 Aug; 141(3):285-96. PubMed ID: 15288600
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of prolonged anoxia on electrical activity of the heart in crucian carp (Carassius carassius).
    Tikkanen E; Haverinen J; Egginton S; Hassinen M; Vornanen M
    J Exp Biol; 2017 Feb; 220(Pt 3):445-454. PubMed ID: 27872214
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Metabolomic Response of Crucian Carp (
    Dahl HA; Johansen A; Nilsson GE; Lefevre S
    Metabolites; 2021 Jul; 11(7):. PubMed ID: 34357329
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gill remodeling in crucian carp during sustained exercise and the effect on subsequent swimming performance.
    Brauner CJ; Matey V; Zhang W; Richards JG; Dhillon R; Cao ZD; Wang Y; Fu SJ
    Physiol Biochem Zool; 2011; 84(6):535-42. PubMed ID: 22030846
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cardiac survival in anoxia-tolerant vertebrates: An electrophysiological perspective.
    Stecyk JA; Galli GL; Shiels HA; Farrell AP
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Nov; 148(4):339-54. PubMed ID: 18589002
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Acute deltamethrin exposure induces oxidative stress, triggers endoplasmic reticulum stress, and impairs hypoxic resistance of crucian carp.
    Yuan X; Wu H; Gao J; Geng X; Xie M; Song R; Zheng J; Wu Y; Ou D
    Comp Biochem Physiol C Toxicol Pharmacol; 2023 Jan; 263():109508. PubMed ID: 36368507
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adenosine does not save the heart of anoxia-tolerant vertebrates during prolonged oxygen deprivation.
    Stecyk JA; Stensløkken KO; Nilsson GE; Farrell AP
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Aug; 147(4):961-73. PubMed ID: 17433747
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reversible brain swelling in crucian carp (Carassius carassius) and goldfish (Carassius auratus) in response to high external ammonia and anoxia.
    Wilkie MP; Stecyk JA; Couturier CS; Sidhu S; Sandvik GK; Nilsson GE
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jun; 184():65-75. PubMed ID: 25582543
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Brain sensitivity to anoxia in fish as reflected by changes in extracellular K+ activity.
    Nilsson GE; Pérez-Pinzón M; Dimberg K; Winberg S
    Am J Physiol; 1993 Feb; 264(2 Pt 2):R250-3. PubMed ID: 8447481
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gill remodeling in fish--a new fashion or an ancient secret?
    Nilsson GE
    J Exp Biol; 2007 Jul; 210(Pt 14):2403-9. PubMed ID: 17601943
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oxygen radical formation in anoxic transgression and anoxia-reoxygenation: foe or phantom? Experiments with a hypoxia tolerant bivalve.
    Rivera-Ingraham GA; Rocchetta I; Meyer S; Abele D
    Mar Environ Res; 2013 Dec; 92():110-9. PubMed ID: 24099680
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The roles of tissue nitrate reductase activity and myoglobin in securing nitric oxide availability in deeply hypoxic crucian carp.
    Hansen MN; Lundberg JO; Filice M; Fago A; Christensen NM; Jensen FB
    J Exp Biol; 2016 Dec; 219(Pt 24):3875-3883. PubMed ID: 27742892
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Extracellular levels of amino acid neurotransmitters during anoxia and forced energy deficiency in crucian carp brain.
    Hylland P; Nilsson GE
    Brain Res; 1999 Mar; 823(1-2):49-58. PubMed ID: 10095011
    [TBL] [Abstract][Full Text] [Related]  

  • 59. New insights into survival strategies to oxygen deprivation in anoxia-tolerant vertebrates.
    Fago A
    Acta Physiol (Oxf); 2022 Jul; 235(3):e13841. PubMed ID: 35548887
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative Transcriptome and DNA methylation analyses of the molecular mechanisms underlying skin color variations in Crucian carp (Carassius carassius L.).
    Zhang Y; Liu J; Fu W; Xu W; Zhang H; Chen S; Liu W; Peng L; Xiao Y
    BMC Genet; 2017 Nov; 18(1):95. PubMed ID: 29121864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.