BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 15919827)

  • 1. Electrostatic mechanism of nucleosomal array folding revealed by computer simulation.
    Sun J; Zhang Q; Schlick T
    Proc Natl Acad Sci U S A; 2005 Jun; 102(23):8180-5. PubMed ID: 15919827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A tale of tails: how histone tails mediate chromatin compaction in different salt and linker histone environments.
    Arya G; Schlick T
    J Phys Chem A; 2009 Apr; 113(16):4045-59. PubMed ID: 19298048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model.
    Arya G; Schlick T
    Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16236-41. PubMed ID: 17060627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulling chromatin fibers: computer simulations of direct physical micromanipulations.
    Katritch V; Bustamante C; Olson WK
    J Mol Biol; 2000 Jan; 295(1):29-40. PubMed ID: 10623506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible histone tails in a new mesoscopic oligonucleosome model.
    Arya G; Zhang Q; Schlick T
    Biophys J; 2006 Jul; 91(1):133-50. PubMed ID: 16603492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding.
    Carruthers LM; Bednar J; Woodcock CL; Hansen JC
    Biochemistry; 1998 Oct; 37(42):14776-87. PubMed ID: 9778352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer modeling demonstrates that electrostatic attraction of nucleosomal DNA is mediated by histone tails.
    Korolev N; Lyubartsev AP; Nordenskiöld L
    Biophys J; 2006 Jun; 90(12):4305-16. PubMed ID: 16565063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer simulation of the 30-nanometer chromatin fiber.
    Wedemann G; Langowski J
    Biophys J; 2002 Jun; 82(6):2847-59. PubMed ID: 12023209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of condensation of nuclear chromatin. A differential scanning calorimetry study of the salt-dependent structural transitions.
    Cavazza B; Brizzolara G; Lazzarini G; Patrone E; Piccardo M; Barboro P; Parodi S; Pasini A; Balbi C
    Biochemistry; 1991 Sep; 30(37):9060-72. PubMed ID: 1892819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural flexibility of the nucleosome core particle at atomic resolution studied by molecular dynamics simulation.
    Roccatano D; Barthel A; Zacharias M
    Biopolymers; 2007 Apr 5-15; 85(5-6):407-21. PubMed ID: 17252562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constructing irregular surfaces to enclose macromolecular complexes for mesoscale modeling using the discrete surface charge optimization (DISCO) algorithm.
    Zhang Q; Beard DA; Schlick T
    J Comput Chem; 2003 Dec; 24(16):2063-74. PubMed ID: 14531059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic interactions with histone tails may bend linker DNA in chromatin.
    Perico A; La Penna G; Arcesi L
    Biopolymers; 2006 Jan; 81(1):20-8. PubMed ID: 16167325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic origin of salt-induced nucleosome array compaction.
    Korolev N; Allahverdi A; Yang Y; Fan Y; Lyubartsev AP; Nordenskiöld L
    Biophys J; 2010 Sep; 99(6):1896-905. PubMed ID: 20858435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid trypsinized nucleosomal arrays: identification of multiple functional roles of the H2A/H2B and H3/H4 N-termini in chromatin fiber compaction.
    Tse C; Hansen JC
    Biochemistry; 1997 Sep; 36(38):11381-8. PubMed ID: 9298957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of histone tails from nucleosome dissects the physical mechanisms of salt-induced aggregation, linker histone H1-induced compaction, and 30-nm fiber formation of the nucleosome array.
    Hizume K; Nakai T; Araki S; Prieto E; Yoshikawa K; Takeyasu K
    Ultramicroscopy; 2009 Jul; 109(8):868-73. PubMed ID: 19328628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial Unwrapping and Histone Tail Dynamics in Nucleosome Revealed by Coarse-Grained Molecular Simulations.
    Kenzaki H; Takada S
    PLoS Comput Biol; 2015 Aug; 11(8):e1004443. PubMed ID: 26262925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin ionic atmosphere analyzed by a mesoscale electrostatic approach.
    Gan HH; Schlick T
    Biophys J; 2010 Oct; 99(8):2587-96. PubMed ID: 20959100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer modeling reveals that modifications of the histone tail charges define salt-dependent interaction of the nucleosome core particles.
    Yang Y; Lyubartsev AP; Korolev N; Nordenskiöld L
    Biophys J; 2009 Mar; 96(6):2082-94. PubMed ID: 19289035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin structure-dependent conformations of the H1 CTD.
    Fang H; Wei S; Lee TH; Hayes JJ
    Nucleic Acids Res; 2016 Nov; 44(19):9131-9141. PubMed ID: 27365050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linker DNA Length is a Key to Tri-nucleosome Folding.
    Kenzaki H; Takada S
    J Mol Biol; 2021 Mar; 433(6):166792. PubMed ID: 33383034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.