These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 15919930)

  • 1. Resistance of human immunodeficiency virus type 1 to the high-mannose binding agents cyanovirin N and concanavalin A.
    Witvrouw M; Fikkert V; Hantson A; Pannecouque C; O'keefe BR; McMahon J; Stamatatos L; de Clercq E; Bolmstedt A
    J Virol; 2005 Jun; 79(12):7777-84. PubMed ID: 15919930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concanavalin A binding to HIV envelope protein is less sensitive to mutations in glycosylation sites than monoclonal antibody 2G12.
    Pashov A; MacLeod S; Saha R; Perry M; VanCott TC; Kieber-Emmons T
    Glycobiology; 2005 Oct; 15(10):994-1001. PubMed ID: 15917430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting carbohydrate-Cyanovirin-N binding by structure-guided mutagenesis: functional implications for viral entry inhibition.
    Barrientos LG; Matei E; Lasala F; Delgado R; Gronenborn AM
    Protein Eng Des Sel; 2006 Dec; 19(12):525-35. PubMed ID: 17012344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-mannose-specific deglycosylation of HIV-1 gp120 induced by resistance to cyanovirin-N and the impact on antibody neutralization.
    Hu Q; Mahmood N; Shattock RJ
    Virology; 2007 Nov; 368(1):145-54. PubMed ID: 17658575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational pathways, resistance profile, and side effects of cyanovirin relative to human immunodeficiency virus type 1 strains with N-glycan deletions in their gp120 envelopes.
    Balzarini J; Van Laethem K; Peumans WJ; Van Damme EJ; Bolmstedt A; Gago F; Schols D
    J Virol; 2006 Sep; 80(17):8411-21. PubMed ID: 16912292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actinohivin, a broadly neutralizing prokaryotic lectin, inhibits HIV-1 infection by specifically targeting high-mannose-type glycans on the gp120 envelope.
    Hoorelbeke B; Huskens D; Férir G; François KO; Takahashi A; Van Laethem K; Schols D; Tanaka H; Balzarini J
    Antimicrob Agents Chemother; 2010 Aug; 54(8):3287-301. PubMed ID: 20498311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyanovirin-N, a potent human immunodeficiency virus-inactivating protein, blocks both CD4-dependent and CD4-independent binding of soluble gp120 (sgp120) to target cells, inhibits sCD4-induced binding of sgp120 to cell-associated CXCR4, and dissociates bound sgp120 from target cells.
    Mori T; Boyd MR
    Antimicrob Agents Chemother; 2001 Mar; 45(3):664-72. PubMed ID: 11181340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profile of resistance of human immunodeficiency virus to mannose-specific plant lectins.
    Balzarini J; Van Laethem K; Hatse S; Vermeire K; De Clercq E; Peumans W; Van Damme E; Vandamme AM; Bölmstedt A; Schols D
    J Virol; 2004 Oct; 78(19):10617-27. PubMed ID: 15367629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycan deletions in the HIV-1 gp120 V1/V2 domain compromise viral infectivity, sensitize the mutant virus strains to carbohydrate-binding agents and represent a specific target for therapeutic intervention.
    Auwerx J; François KO; Covens K; Van Laethem K; Balzarini J
    Virology; 2008 Dec; 382(1):10-9. PubMed ID: 18930512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pradimicin A, a carbohydrate-binding nonpeptidic lead compound for treatment of infections with viruses with highly glycosylated envelopes, such as human immunodeficiency virus.
    Balzarini J; Van Laethem K; Daelemans D; Hatse S; Bugatti A; Rusnati M; Igarashi Y; Oki T; Schols D
    J Virol; 2007 Jan; 81(1):362-73. PubMed ID: 17050611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Marked depletion of glycosylation sites in HIV-1 gp120 under selection pressure by the mannose-specific plant lectins of Hippeastrum hybrid and Galanthus nivalis.
    Balzarini J; Van Laethem K; Hatse S; Froeyen M; Van Damme E; Bolmstedt A; Peumans W; De Clercq E; Schols D
    Mol Pharmacol; 2005 May; 67(5):1556-65. PubMed ID: 15718224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actinohivin, a novel anti-human immunodeficiency virus protein from an actinomycete, inhibits viral entry to cells by binding high-mannose type sugar chains of gp120.
    Chiba H; Inokoshi J; Nakashima H; Omura S; Tanaka H
    Biochem Biophys Res Commun; 2004 Mar; 316(1):203-10. PubMed ID: 15003531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human immunodeficiency virus envelope (gp120) binding to DC-SIGN and primary dendritic cells is carbohydrate dependent but does not involve 2G12 or cyanovirin binding sites: implications for structural analyses of gp120-DC-SIGN binding.
    Hong PW; Flummerfelt KB; de Parseval A; Gurney K; Elder JH; Lee B
    J Virol; 2002 Dec; 76(24):12855-65. PubMed ID: 12438611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective interactions of the human immunodeficiency virus-inactivating protein cyanovirin-N with high-mannose oligosaccharides on gp120 and other glycoproteins.
    Shenoy SR; O'Keefe BR; Bolmstedt AJ; Cartner LK; Boyd MR
    J Pharmacol Exp Ther; 2001 May; 297(2):704-10. PubMed ID: 11303061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of two high-mannose N-linked glycans on gp120 renders human immunodeficiency virus 1 largely resistant to the carbohydrate-binding agent griffithsin.
    Huang X; Jin W; Griffin GE; Shattock RJ; Hu Q
    J Gen Virol; 2011 Oct; 92(Pt 10):2367-2373. PubMed ID: 21715597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of cyanovirin-N (CV-N): inactivation of HIV-1 by sessile cyanovirin-N (sCV-N).
    Gandhi MJ; Boyd MR; Yi L; Yang GG; Vyas GN
    Dev Biol (Basel); 2000; 102():141-8. PubMed ID: 10794101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of sequence requirements for biological activity of cyanovirin-N, a potent HIV (human immunodeficiency virus)-inactivating protein.
    Mori T; Shoemaker RH; Gulakowski RJ; Krepps BL; McMahon JB; Gustafson KR; Pannell LK; Boyd MR
    Biochem Biophys Res Commun; 1997 Sep; 238(1):218-22. PubMed ID: 9299482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The HIV-inactivating protein, cyanovirin-N, does not block gp120-mediated virus-to-cell binding.
    Mariner JM; McMahon JB; O'Keefe BR; Nagashima K; Boyd MR
    Biochem Biophys Res Commun; 1998 Jul; 248(3):841-5. PubMed ID: 9704015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of HIV entry by carbohydrate-binding proteins.
    Balzarini J
    Antiviral Res; 2006 Sep; 71(2-3):237-47. PubMed ID: 16569440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure of HIV-1 to a combination of two carbohydrate-binding agents markedly delays drug resistance development and selects for virus strains with compromised fitness.
    Mathys L; Balzarini J
    J Antimicrob Chemother; 2014 Mar; 69(3):582-93. PubMed ID: 24144923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.