These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 15920)
1. Stimulation of microsomal NADPH oxidation by quinone group-containing anticancer chemicals. Handa K; Sato S Gan; 1976 Aug; 67(4):523-8. PubMed ID: 15920 [TBL] [Abstract][Full Text] [Related]
2. Generation of free radicals of quinone group-containing anti-cancer chemicals in NADPH-microsome system as evidenced by initiation of sulfite oxidation. Handa K; Sato S Gan; 1975 Feb; 66(1):43-7. PubMed ID: 239881 [TBL] [Abstract][Full Text] [Related]
3. Electron spin resonance study on the mode of generation of free radicals of daunomycin, adriamycin, and carboquone in NAD(P)H-microsome system. Sato S; Iwaizumi M; Handa K; Tamura Y Gan; 1977 Oct; 68(5):603-8. PubMed ID: 22473 [TBL] [Abstract][Full Text] [Related]
4. Generation of hydroxyl radical by anticancer quinone drugs, carbazilquinone, mitomycin C, aclacinomycin A and adriamycin, in the presence of NADPH-cytochrome P-450 reductase. Komiyama T; Kikuchi T; Sugiura Y Biochem Pharmacol; 1982 Nov; 31(22):3651-6. PubMed ID: 6295407 [TBL] [Abstract][Full Text] [Related]
5. Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar. Winston GW; Church DF; Cueto R; Pryor WA Arch Biochem Biophys; 1993 Aug; 304(2):371-8. PubMed ID: 8394056 [TBL] [Abstract][Full Text] [Related]
6. Stimulation of mouse heart and liver microsomal lipid peroxidation by anthracycline anticancer drugs: characterization and effects of reactive oxygen scavengers. Mimnaugh EG; Gram TE; Trush MA J Pharmacol Exp Ther; 1983 Sep; 226(3):806-16. PubMed ID: 6411900 [TBL] [Abstract][Full Text] [Related]
7. Interactions of anticancer quinone drugs, aclacinomycin A, adriamycin, carbazilquinone, and mitomycin C, with NADPH-cytochrome P-450 reductase, xanthine oxidase and oxygen. Komiyama T; Kikuchi T; Sugiura Y J Pharmacobiodyn; 1986 Aug; 9(8):651-64. PubMed ID: 3023600 [TBL] [Abstract][Full Text] [Related]
8. NADPH cytochrome P-450 reductase activation of quinone anticancer agents to free radicals. Bachur NR; Gordon SL; Gee MV; Kon H Proc Natl Acad Sci U S A; 1979 Feb; 76(2):954-7. PubMed ID: 34156 [TBL] [Abstract][Full Text] [Related]
9. One-electron reduction of mitomycin c by rat liver: role of cytochrome P-450 and NADPH-cytochrome P-450 reductase. Vromans RM; van de Straat R; Groeneveld M; Vermeulen NP Xenobiotica; 1990 Sep; 20(9):967-78. PubMed ID: 2122607 [TBL] [Abstract][Full Text] [Related]
10. Stimulation of a reconstituted, microsomal NADH oxidase system by carboquone, a quinoid anticancer chemical. Tamura Y; Sato S Gan; 1977 Jun; 68(3):353-6. PubMed ID: 199521 [TBL] [Abstract][Full Text] [Related]
11. [Effect of 2-hydroxyestradiol-17beta on NADPH-dependent electron transfer in rat liver microsomes in vitro (author's transl)]. Wollenberg P; Scheulen M; Bolt HM; Kappus H; Remmer H Hoppe Seylers Z Physiol Chem; 1976 Mar; 357(3):351-7. PubMed ID: 8367 [TBL] [Abstract][Full Text] [Related]
12. Potentiation of anticancer drug effect by cancer cell glycosis: an in vitro experiment. Kimura NT; Kanematsu T; Baba T Gan; 1974 Dec; 65(6):513-22. PubMed ID: 4464181 [No Abstract] [Full Text] [Related]
13. The effect of zinc on NADPH oxidation and monooxygenase activity in rat hepatic microsomes. Jeffery EH Mol Pharmacol; 1983 Mar; 23(2):467-73. PubMed ID: 6132332 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of microsomal oxidative drug metabolism by 1,4-bis (2-[(2-hydroxyethyl)amino]-ethylamino)-9,10-anthracenedione diacetate, a new antineoplastic agent. Kharasch ED; Novak RF Mol Pharmacol; 1982 Sep; 22(2):471-8. PubMed ID: 6815478 [TBL] [Abstract][Full Text] [Related]
15. The effects of the quinone type drugs on hydroxyl radical (OH.) production by rat liver microsomes. Tobia AJ; Couri D; Sagone A J Toxicol Environ Health; 1985; 15(2):265-77. PubMed ID: 3925152 [TBL] [Abstract][Full Text] [Related]
16. Denitrosation of the anti-cancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea catalyzed by microsomal glutathione S-transferase and cytochrome P450 monooxygenases. Weber GF; Waxman DJ Arch Biochem Biophys; 1993 Dec; 307(2):369-78. PubMed ID: 8274024 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms of Anthracycline-Enhanced Reactive Oxygen Metabolism in Tumor Cells. Doroshow JH Oxid Med Cell Longev; 2019; 2019():9474823. PubMed ID: 31885826 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of NADPH-induced lipid peroxidation in rat liver microsomal fractions as a function of age. Devasagayam TP; Pushpendran CK Biochem Int; 1985 Dec; 11(6):833-9. PubMed ID: 3937529 [TBL] [Abstract][Full Text] [Related]
20. Oxidation of diethyldithiocarbamate to disulfiram by liver microsomes in the presence of NADPH and subsequent loss of microsomal enzyme activity in vitro. Masuda Y Res Commun Chem Pathol Pharmacol; 1988 Nov; 62(2):251-66. PubMed ID: 2855181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]