These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 15920272)
1. Removing proteins from an aerated yeast fermentation by pulsing carbon dioxide: replacing salting-out as a method of protein precipitation. Kirkland RA; Tanner RD Appl Biochem Biotechnol; 2005; 121-124():685-93. PubMed ID: 15920272 [TBL] [Abstract][Full Text] [Related]
2. Toward consistent and productive complex media for industrial fermentations: studies on yeast extract for a recombinant yeast fermentation process. Zhang J; Reddy J; Buckland B; Greasham R Biotechnol Bioeng; 2003 Jun; 82(6):640-52. PubMed ID: 12673763 [TBL] [Abstract][Full Text] [Related]
3. Carbon dioxide inhibition of yeast growth in biomass production. Chen SL; Gutmains F Biotechnol Bioeng; 1976 Oct; 18(10):1455-62. PubMed ID: 786407 [TBL] [Abstract][Full Text] [Related]
4. Early transcriptional response to biotic stress in mixed starter fermentations involving Saccharomyces cerevisiae and Torulaspora delbrueckii. Tronchoni J; Curiel JA; Morales P; Torres-Pérez R; Gonzalez R Int J Food Microbiol; 2017 Jan; 241():60-68. PubMed ID: 27756034 [TBL] [Abstract][Full Text] [Related]
5. Characterisation of HFBII biosurfactant production and foam fractionation with and without antifoaming agents. Winterburn JB; Russell AB; Martin PJ Appl Microbiol Biotechnol; 2011 May; 90(3):911-20. PubMed ID: 21311879 [TBL] [Abstract][Full Text] [Related]
6. Decrease in hydrogen sulfide content during the final stage of beer fermentation due to involvement of yeast and not carbon dioxide gas purging. Oka K; Hayashi T; Matsumoto N; Yanase H J Biosci Bioeng; 2008 Sep; 106(3):253-7. PubMed ID: 18930001 [TBL] [Abstract][Full Text] [Related]
7. Field-flow fractionation as analytical technique for the characterization of dry yeast: correlation with wine fermentation activity. Sanz R; Galceran MT; Puignou L Biotechnol Prog; 2003; 19(6):1786-91. PubMed ID: 14656157 [TBL] [Abstract][Full Text] [Related]
15. Proteins involved in wine aroma compounds metabolism by a Saccharomyces cerevisiae flor-velum yeast strain grown in two conditions. Moreno-García J; García-Martínez T; Millán MC; Mauricio JC; Moreno J Food Microbiol; 2015 Oct; 51():1-9. PubMed ID: 26187821 [TBL] [Abstract][Full Text] [Related]
16. Proteomic analysis of a distilling strain of Saccharomyces cerevisiae during industrial grain fermentation. Hansen R; Pearson SY; Brosnan JM; Meaden PG; Jamieson DJ Appl Microbiol Biotechnol; 2006 Aug; 72(1):116-125. PubMed ID: 16820951 [TBL] [Abstract][Full Text] [Related]
17. Harvesting yeast (Saccharomyces cerevisiae) at different physiological phases significantly affects its functionality in bread dough fermentation. Rezaei MN; Dornez E; Jacobs P; Parsi A; Verstrepen KJ; Courtin CM Food Microbiol; 2014 May; 39():108-15. PubMed ID: 24387860 [TBL] [Abstract][Full Text] [Related]
18. Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations. Seong YJ; Park H; Yang J; Kim SJ; Choi W; Kim KH; Park YC Appl Microbiol Biotechnol; 2017 May; 101(9):3567-3575. PubMed ID: 28168313 [TBL] [Abstract][Full Text] [Related]
19. FLO11-based model for air-liquid interfacial biofilm formation by Saccharomyces cerevisiae. Zara S; Bakalinsky AT; Zara G; Pirino G; Demontis MA; Budroni M Appl Environ Microbiol; 2005 Jun; 71(6):2934-9. PubMed ID: 15932987 [TBL] [Abstract][Full Text] [Related]
20. Process for symbiotic culture of Saccharomyces cerevisiae and Chlorella vulgaris for in situ CO La A; Perré P; Taidi B Appl Microbiol Biotechnol; 2019 Jan; 103(2):731-745. PubMed ID: 30421109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]