These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 15920272)

  • 1. Removing proteins from an aerated yeast fermentation by pulsing carbon dioxide: replacing salting-out as a method of protein precipitation.
    Kirkland RA; Tanner RD
    Appl Biochem Biotechnol; 2005; 121-124():685-93. PubMed ID: 15920272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward consistent and productive complex media for industrial fermentations: studies on yeast extract for a recombinant yeast fermentation process.
    Zhang J; Reddy J; Buckland B; Greasham R
    Biotechnol Bioeng; 2003 Jun; 82(6):640-52. PubMed ID: 12673763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon dioxide inhibition of yeast growth in biomass production.
    Chen SL; Gutmains F
    Biotechnol Bioeng; 1976 Oct; 18(10):1455-62. PubMed ID: 786407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early transcriptional response to biotic stress in mixed starter fermentations involving Saccharomyces cerevisiae and Torulaspora delbrueckii.
    Tronchoni J; Curiel JA; Morales P; Torres-Pérez R; Gonzalez R
    Int J Food Microbiol; 2017 Jan; 241():60-68. PubMed ID: 27756034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of HFBII biosurfactant production and foam fractionation with and without antifoaming agents.
    Winterburn JB; Russell AB; Martin PJ
    Appl Microbiol Biotechnol; 2011 May; 90(3):911-20. PubMed ID: 21311879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decrease in hydrogen sulfide content during the final stage of beer fermentation due to involvement of yeast and not carbon dioxide gas purging.
    Oka K; Hayashi T; Matsumoto N; Yanase H
    J Biosci Bioeng; 2008 Sep; 106(3):253-7. PubMed ID: 18930001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field-flow fractionation as analytical technique for the characterization of dry yeast: correlation with wine fermentation activity.
    Sanz R; Galceran MT; Puignou L
    Biotechnol Prog; 2003; 19(6):1786-91. PubMed ID: 14656157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein expression-yeast.
    Nielsen KH
    Methods Enzymol; 2014; 536():133-47. PubMed ID: 24423273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recycling Carbon Dioxide during Xylose Fermentation by Engineered Saccharomyces cerevisiae.
    Xia PF; Zhang GC; Walker B; Seo SO; Kwak S; Liu JJ; Kim H; Ort DR; Wang SG; Jin YS
    ACS Synth Biol; 2017 Feb; 6(2):276-283. PubMed ID: 27744692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-aided baker's yeast fermentations.
    Wang HY; Cooney CL; Wang DI
    Biotechnol Bioeng; 1977 Jan; 19(1):69-86. PubMed ID: 321045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FPG1, a gene involved in foam formation in Saccharomyces cerevisiae.
    Blasco L; Veiga-Crespo P; Villa TG
    Yeast; 2011 Jun; 28(6):437-51. PubMed ID: 21425329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation.
    Bely M; Stoeckle P; Masneuf-Pomarède I; Dubourdieu D
    Int J Food Microbiol; 2008 Mar; 122(3):312-20. PubMed ID: 18262301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fed-batch cultivation of Saccharomyces cerevisiae in a hyperbaric bioreactor.
    Belo I; Pinheiro R; Mota M
    Biotechnol Prog; 2003; 19(2):665-71. PubMed ID: 12675615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteins involved in flor yeast carbon metabolism under biofilm formation conditions.
    Moreno-García J; García-Martínez T; Moreno J; Mauricio JC
    Food Microbiol; 2015 Apr; 46():25-33. PubMed ID: 25475262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteins involved in wine aroma compounds metabolism by a Saccharomyces cerevisiae flor-velum yeast strain grown in two conditions.
    Moreno-García J; García-Martínez T; Millán MC; Mauricio JC; Moreno J
    Food Microbiol; 2015 Oct; 51():1-9. PubMed ID: 26187821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic analysis of a distilling strain of Saccharomyces cerevisiae during industrial grain fermentation.
    Hansen R; Pearson SY; Brosnan JM; Meaden PG; Jamieson DJ
    Appl Microbiol Biotechnol; 2006 Aug; 72(1):116-125. PubMed ID: 16820951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harvesting yeast (Saccharomyces cerevisiae) at different physiological phases significantly affects its functionality in bread dough fermentation.
    Rezaei MN; Dornez E; Jacobs P; Parsi A; Verstrepen KJ; Courtin CM
    Food Microbiol; 2014 May; 39():108-15. PubMed ID: 24387860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations.
    Seong YJ; Park H; Yang J; Kim SJ; Choi W; Kim KH; Park YC
    Appl Microbiol Biotechnol; 2017 May; 101(9):3567-3575. PubMed ID: 28168313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FLO11-based model for air-liquid interfacial biofilm formation by Saccharomyces cerevisiae.
    Zara S; Bakalinsky AT; Zara G; Pirino G; Demontis MA; Budroni M
    Appl Environ Microbiol; 2005 Jun; 71(6):2934-9. PubMed ID: 15932987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Process for symbiotic culture of Saccharomyces cerevisiae and Chlorella vulgaris for in situ CO
    La A; Perré P; Taidi B
    Appl Microbiol Biotechnol; 2019 Jan; 103(2):731-745. PubMed ID: 30421109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.