BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 15920479)

  • 1. Heterochromatin formation involves changes in histone modifications over multiple cell generations.
    Katan-Khaykovich Y; Struhl K
    EMBO J; 2005 Jun; 24(12):2138-49. PubMed ID: 15920479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple histone modifications in euchromatin promote heterochromatin formation by redundant mechanisms in Saccharomyces cerevisiae.
    Verzijlbergen KF; Faber AW; Stulemeijer IJ; van Leeuwen F
    BMC Mol Biol; 2009 Jul; 10():76. PubMed ID: 19638198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin.
    Meneghini MD; Wu M; Madhani HD
    Cell; 2003 Mar; 112(5):725-36. PubMed ID: 12628191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H2A.Z (Htz1) controls the cell-cycle-dependent establishment of transcriptional silencing at Saccharomyces cerevisiae telomeres.
    Martins-Taylor K; Sharma U; Rozario T; Holmes SG
    Genetics; 2011 Jan; 187(1):89-104. PubMed ID: 20980239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of heterochromatin-dependent transcriptional gene silencing.
    Johnson A; Li G; Sikorski TW; Buratowski S; Woodcock CL; Moazed D
    Mol Cell; 2009 Sep; 35(6):769-81. PubMed ID: 19782027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone H2B ubiquitylation and H3 lysine 4 methylation prevent ectopic silencing of euchromatic loci important for the cellular response to heat.
    Leung A; Cajigas I; Jia P; Ezhkova E; Brickner JH; Zhao Z; Geng F; Tansey WP
    Mol Biol Cell; 2011 Aug; 22(15):2741-53. PubMed ID: 21680712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the impact of histone acetylation and methylation on Sir protein recruitment, spreading, and silencing in Saccharomyces cerevisiae.
    Yang B; Britton J; Kirchmaier AL
    J Mol Biol; 2008 Sep; 381(4):826-44. PubMed ID: 18619469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast heterochromatin regulators Sir2 and Sir3 act directly at euchromatic DNA replication origins.
    Hoggard TA; Chang F; Perry KR; Subramanian S; Kenworthy J; Chueng J; Shor E; Hyland EM; Boeke JD; Weinreich M; Fox CA
    PLoS Genet; 2018 May; 14(5):e1007418. PubMed ID: 29795547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone H3 lysine 36 methylation antagonizes silencing in Saccharomyces cerevisiae independently of the Rpd3S histone deacetylase complex.
    Tompa R; Madhani HD
    Genetics; 2007 Feb; 175(2):585-93. PubMed ID: 17179083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nonhistone protein-protein interaction required for assembly of the SIR complex and silent chromatin.
    Rudner AD; Hall BE; Ellenberger T; Moazed D
    Mol Cell Biol; 2005 Jun; 25(11):4514-28. PubMed ID: 15899856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spreading of Sir3 protein in cells with severe histone H3 hypoacetylation.
    Kristjuhan A; Wittschieben BO; Walker J; Roberts D; Cairns BR; Svejstrup JQ
    Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7551-6. PubMed ID: 12796514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone Deacetylases with Antagonistic Roles in Saccharomyces cerevisiae Heterochromatin Formation.
    Thurtle-Schmidt DM; Dodson AE; Rine J
    Genetics; 2016 Sep; 204(1):177-90. PubMed ID: 27489001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylation of H3 lysine 4 at euchromatin promotes Sir3p association with heterochromatin.
    Santos-Rosa H; Bannister AJ; Dehe PM; Géli V; Kouzarides T
    J Biol Chem; 2004 Nov; 279(46):47506-12. PubMed ID: 15280381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The C-terminus of histone H2B is involved in chromatin compaction specifically at telomeres, independently of its monoubiquitylation at lysine 123.
    Wang CY; Hua CY; Hsu HE; Hsu CL; Tseng HY; Wright DE; Hsu PH; Jen CH; Lin CY; Wu MY; Tsai MD; Kao CF
    PLoS One; 2011; 6(7):e22209. PubMed ID: 21829450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rpd3-dependent boundary formation at telomeres by removal of Sir2 substrate.
    Ehrentraut S; Weber JM; Dybowski JN; Hoffmann D; Ehrenhofer-Murray AE
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5522-7. PubMed ID: 20133733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern.
    Braunstein M; Sobel RE; Allis CD; Turner BM; Broach JR
    Mol Cell Biol; 1996 Aug; 16(8):4349-56. PubMed ID: 8754835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recruitment and allosteric stimulation of a histone-deubiquitinating enzyme during heterochromatin assembly.
    Zukowski A; Al-Afaleq NO; Duncan ED; Yao T; Johnson AM
    J Biol Chem; 2018 Feb; 293(7):2498-2509. PubMed ID: 29288197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model for step-wise assembly of heterochromatin in yeast.
    Moazed D; Rudner AD; Huang J; Hoppe GJ; Tanny JC
    Novartis Found Symp; 2004; 259():48-56; discussion 56-62, 163-9. PubMed ID: 15171246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The establishment of gene silencing at single-cell resolution.
    Osborne EA; Dudoit S; Rine J
    Nat Genet; 2009 Jul; 41(7):800-6. PubMed ID: 19543267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel role for histone chaperones CAF-1 and Rtt106p in heterochromatin silencing.
    Huang S; Zhou H; Tarara J; Zhang Z
    EMBO J; 2007 May; 26(9):2274-83. PubMed ID: 17410207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.