BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 15920483)

  • 1. Movements of the epsilon-subunit during catalysis and activation in single membrane-bound H(+)-ATP synthase.
    Zimmermann B; Diez M; Zarrabi N; Gräber P; Börsch M
    EMBO J; 2005 Jun; 24(12):2053-63. PubMed ID: 15920483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subunit movements in membrane-integrated EF0F1 during ATP synthesis detected by single-molecule spectroscopy.
    Zimmermann B; Diez M; Börsch M; Gräber P
    Biochim Biophys Acta; 2006; 1757(5-6):311-9. PubMed ID: 16765907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton-powered subunit rotation in single membrane-bound F0F1-ATP synthase.
    Diez M; Zimmermann B; Börsch M; König M; Schweinberger E; Steigmiller S; Reuter R; Felekyan S; Kudryavtsev V; Seidel CA; Gräber P
    Nat Struct Mol Biol; 2004 Feb; 11(2):135-41. PubMed ID: 14730350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subunit movement in individual H+-ATP synthases during ATP synthesis and hydrolysis revealed by fluorescence resonance energy transfer.
    Börsch M; Gräber P
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):878-82. PubMed ID: 16042618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The proton-translocating a subunit of F0F1-ATP synthase is allocated asymmetrically to the peripheral stalk.
    Düser MG; Bi Y; Zarrabi N; Dunn SD; Börsch M
    J Biol Chem; 2008 Nov; 283(48):33602-10. PubMed ID: 18786919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of single nucleotides to H+-ATP synthases observed by fluorescence resonance energy transfer.
    Steigmiller S; Zimmermann B; Diez M; Börsch M; Gräber P
    Bioelectrochemistry; 2004 Jun; 63(1-2):79-85. PubMed ID: 15110252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The regulatory subunit ε in Escherichia coli F
    Sielaff H; Duncan TM; Börsch M
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):775-788. PubMed ID: 29932911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex.
    Deckers-Hebestreit G; Altendorf K
    Annu Rev Microbiol; 1996; 50():791-824. PubMed ID: 8905099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing conformations of the beta subunit of F0F1-ATP synthase in catalysis.
    Masaike T; Suzuki T; Tsunoda SP; Konno H; Yoshida M
    Biochem Biophys Res Commun; 2006 Apr; 342(3):800-7. PubMed ID: 16517239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling H+ transport and ATP synthesis in F1F0-ATP synthases: glimpses of interacting parts in a dynamic molecular machine.
    Fillingame RH
    J Exp Biol; 1997 Jan; 200(Pt 2):217-24. PubMed ID: 9050229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the F0F1-ATP synthase: the conformation of subunit epsilon might be determined by directionality of subunit gamma rotation.
    Feniouk BA; Junge W
    FEBS Lett; 2005 Sep; 579(23):5114-8. PubMed ID: 16154570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-dependent FRET with single enzymes: domain motions and catalysis in H(+)-ATP synthases.
    Bienert R; Zimmermann B; Rombach-Riegraf V; Gräber P
    Chemphyschem; 2011 Feb; 12(3):510-7. PubMed ID: 21287678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP synthase from Escherichia coli: Mechanism of rotational catalysis, and inhibition with the ε subunit and phytopolyphenols.
    Nakanishi-Matsui M; Sekiya M; Futai M
    Biochim Biophys Acta; 2016 Feb; 1857(2):129-140. PubMed ID: 26589785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotational catalysis of Escherichia coli ATP synthase F1 sector. Stochastic fluctuation and a key domain of the beta subunit.
    Nakanishi-Matsui M; Kashiwagi S; Ubukata T; Iwamoto-Kihara A; Wada Y; Futai M
    J Biol Chem; 2007 Jul; 282(28):20698-704. PubMed ID: 17517893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two distinct proton binding sites in the ATP synthase family.
    von Ballmoos C; Dimroth P
    Biochemistry; 2007 Oct; 46(42):11800-9. PubMed ID: 17910472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotor/Stator interactions of the epsilon subunit in Escherichia coli ATP synthase and implications for enzyme regulation.
    Bulygin VV; Duncan TM; Cross RL
    J Biol Chem; 2004 Aug; 279(34):35616-21. PubMed ID: 15199054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large conformational changes of the epsilon subunit in the bacterial F1F0 ATP synthase provide a ratchet action to regulate this rotary motor enzyme.
    Tsunoda SP; Rodgers AJ; Aggeler R; Wilce MC; Yoshida M; Capaldi RA
    Proc Natl Acad Sci U S A; 2001 Jun; 98(12):6560-4. PubMed ID: 11381110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural changes linked to proton translocation by subunit c of the ATP synthase.
    Rastogi VK; Girvin ME
    Nature; 1999 Nov; 402(6759):263-8. PubMed ID: 10580496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of catalytic sites on Escherichia coli F1ATPase by laser photoactivated labeling with [3H]-2-Azido-ATP using the mutant beta Glu381Cys:epsilonSer108Cys to identify different beta subunits by their interactions with gamma and epsilon subunits.
    Grüber G; Capaldi RA
    Biochemistry; 1996 Apr; 35(13):3875-9. PubMed ID: 8672416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the gamma-epsilon complex of ATP synthase.
    Rodgers AJ; Wilce MC
    Nat Struct Biol; 2000 Nov; 7(11):1051-4. PubMed ID: 11062562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.