BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15921272)

  • 21. Heavy metal bioaccumulation by Miscanthus sacchariflorus and its potential for removing metals from the Dongting Lake wetlands, China.
    Yao X; Niu Y; Li Y; Zou D; Ding X; Bian H
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):20003-20011. PubMed ID: 29744779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus.
    Chandra R; Yadav S
    Int J Phytoremediation; 2011 Jul; 13(6):580-91. PubMed ID: 21972504
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitrogen and Phosphorus Phytoextraction by Cattail (
    Jeke NN; Zvomuya F; Cicek N; Ross L; Badiou P
    J Environ Qual; 2019 Jan; 48(1):24-31. PubMed ID: 30640361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of nitrogen and phosphorus by aboveground biomass of
    Nikolić L; Maksimović I; Džigurski D; Putnik-Delić M; Ljevnaić-Mašić B
    Int J Phytoremediation; 2023; 25(4):483-492. PubMed ID: 35786062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater.
    Kumari M; Tripathi BD
    Ecotoxicol Environ Saf; 2015 Feb; 112():80-6. PubMed ID: 25463857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland.
    Hadad HR; Mufarrege MM; Pinciroli M; Di Luca GA; Maine MA
    Arch Environ Contam Toxicol; 2010 Apr; 58(3):666-75. PubMed ID: 20041323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitrogen and phosphorus accumulation and biomass production by Scirpus sylvaticus and Phragmites australis in a horizontal subsurface flow constructed wetland.
    Kuusemets V; Lõhmus K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(6-7):1167-75. PubMed ID: 15921273
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of patent bio-rack wetland system using Phragmites sp. for domestic wastewater treatment in the presence of high total dissolved solids (TDS) and heavy metal salts.
    Valipour A; Raman VK; Ghole VS
    J Environ Sci Eng; 2011 Jul; 53(3):281-8. PubMed ID: 23029929
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performance of constructed wetland for highway runoff treatment.
    Bulc T; Slak AS
    Water Sci Technol; 2003; 48(2):315-22. PubMed ID: 14510226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monitoring and assessment of heavy metal contamination in a constructed wetland in Shaoguan (Guangdong Province, China): bioaccumulation of Pb, Zn, Cu and Cd in aquatic and terrestrial components.
    Leung HM; Duzgoren-Aydin NS; Au CK; Krupanidhi S; Fung KY; Cheung KC; Wong YK; Peng XL; Ye ZH; Yung KK; Tsui MT
    Environ Sci Pollut Res Int; 2017 Apr; 24(10):9079-9088. PubMed ID: 27164879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing phosphorus removal in constructed wetlands with ochre from mine drainage treatment.
    Heal KV; Dobbie KE; Bozika E; McHaffie H; Simpson AE; Smith KA
    Water Sci Technol; 2005; 51(9):275-82. PubMed ID: 16042268
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigating Co, Cu, and Pb retention and remobilization after drying and rewetting treatments in greenhouse laboratory-scale constructed treatments with and without Typha angustifolia, and connected phytoremediation potential.
    Nabuyanda MM; van Bruggen J; Kelderman P; Irvine K
    J Environ Manage; 2019 Apr; 236():510-518. PubMed ID: 30771671
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The fate of selected heavy metals and arsenic in a constructed wetland.
    Šíma J; Svoboda L; Šeda M; Krejsa J; Jahodová J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(1):56-64. PubMed ID: 30663931
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synergistic phytoremediation of wastewater by two aquatic plants (Typha angustifolia and Eichhornia crassipes) and potential as biomass fuel.
    Sricoth T; Meeinkuirt W; Pichtel J; Taeprayoon P; Saengwilai P
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5344-5358. PubMed ID: 29209971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distribution of Mn, Al, Cu and Zn in a constructed wetland receiving municipal sewage.
    Vymazal J; Krása P
    Water Sci Technol; 2003; 48(5):299-305. PubMed ID: 14621177
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cold climate phosphorus uptake by submerged aquatic plants in a sewage treatment free water surface wetland.
    Ulén B; Tonderski KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(6-7):1177-90. PubMed ID: 15921274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preliminary study on the dynamics of heavy metals in saline wastewater treated in constructed wetland mesocosms or microcosms filled with porous slag.
    Liang Y; Zhu H; Bañuelos G; Xu Y; Yan B; Cheng X
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):33804-33815. PubMed ID: 29881966
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of Typha latifolia and fertilization on metal mobility in two different Pb-Zn mine tailings types.
    Jacob DL; Otte ML
    Sci Total Environ; 2004 Oct; 333(1-3):9-24. PubMed ID: 15364516
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative study on the performance of Typha latifolia and Cyperus Papyrus on the removal of heavy metals and enteric bacteria from wastewater by surface constructed wetlands.
    Hamad MTMH
    Chemosphere; 2020 Dec; 260():127551. PubMed ID: 32683013
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of vegetation on the removal of heavy metals and nutrients in a constructed wetland.
    Maine MA; Suñe N; Hadad H; Sánchez G; Bonetto C
    J Environ Manage; 2009 Jan; 90(1):355-63. PubMed ID: 18079048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.