These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
391 related articles for article (PubMed ID: 15922079)
21. Genetically modified crops for biomass increase. Genes and strategies. Rojas CA; Hemerly AS; Ferreira PC GM Crops; 2010; 1(3):137-42. PubMed ID: 21865869 [TBL] [Abstract][Full Text] [Related]
22. Toward a quarter century of pathogen-derived resistance and practical approaches to plant virus disease control. Gottula J; Fuchs M Adv Virus Res; 2009; 75():161-83. PubMed ID: 20109666 [TBL] [Abstract][Full Text] [Related]
23. Role of transgenic plants in agriculture and biopharming. Ahmad P; Ashraf M; Younis M; Hu X; Kumar A; Akram NA; Al-Qurainy F Biotechnol Adv; 2012; 30(3):524-40. PubMed ID: 21959304 [TBL] [Abstract][Full Text] [Related]
24. [Chitinases in bioengeneering research]. Shakhbazov AV; Kartel' NA Genetika; 2008 Aug; 44(8):1013-22. PubMed ID: 18825950 [TBL] [Abstract][Full Text] [Related]
25. Agricultural biotech: the rice squad. Surridge C Nature; 2002 Apr; 416(6881):576-8. PubMed ID: 11948321 [No Abstract] [Full Text] [Related]
26. Potential for the environmental impact of transgenic crops. Dale PJ; Clarke B; Fontes EM Nat Biotechnol; 2002 Jun; 20(6):567-74. PubMed ID: 12042859 [TBL] [Abstract][Full Text] [Related]
28. Engineering pathogen resistance in crop plants. Campbell MA; Fitzgerald HA; Ronald PC Transgenic Res; 2002 Dec; 11(6):599-613. PubMed ID: 12509135 [TBL] [Abstract][Full Text] [Related]
29. [Plant genetic engineering in Monsanto company: from the first laboratory experiments to worldwide practical use]. Konov AL; Velchev M; Parcel D Tsitol Genet; 2005; 39(3):3-12. PubMed ID: 16250241 [TBL] [Abstract][Full Text] [Related]
30. Needs for and environmental risks from transgenic crops in the developing world. Gressel J N Biotechnol; 2010 Nov; 27(5):522-7. PubMed ID: 20685306 [TBL] [Abstract][Full Text] [Related]
31. Genetic engineering in Cowpea (Vigna unguiculata): history, status and prospects. Citadin CT; Ibrahim AB; Aragão FJ GM Crops; 2011; 2(3):144-9. PubMed ID: 22179190 [TBL] [Abstract][Full Text] [Related]
32. Stop helping pathogens: engineering plant susceptibility genes for durable resistance. Garcia-Ruiz H; Szurek B; Van den Ackerveken G Curr Opin Biotechnol; 2021 Aug; 70():187-195. PubMed ID: 34153774 [TBL] [Abstract][Full Text] [Related]
33. Excavating abiotic stress-related gene resources of terrestrial macroscopic cyanobacteria for crop genetic engineering: dawn and challenge. Ye S; Gao X Bioengineered; 2015; 6(6):313-5. PubMed ID: 26418632 [TBL] [Abstract][Full Text] [Related]
34. TALE nucleases and next generation GM crops. Mahfouz MM; Li L GM Crops; 2011; 2(2):99-103. PubMed ID: 21865862 [TBL] [Abstract][Full Text] [Related]
35. Intragenesis and cisgenesis as alternatives to transgenic crop development. Holme IB; Wendt T; Holm PB Plant Biotechnol J; 2013 May; 11(4):395-407. PubMed ID: 23421562 [TBL] [Abstract][Full Text] [Related]
36. Exploiting pathogens' tricks of the trade for engineering of plant disease resistance: challenges and opportunities. Grant MR; Kazan K; Manners JM Microb Biotechnol; 2013 May; 6(3):212-22. PubMed ID: 23279915 [TBL] [Abstract][Full Text] [Related]
37. [Achievements and problems of genetic engineering of Crucifereceae plants]. Radchuk VV; Blium IaB Tsitol Genet; 2005; 39(3):13-29. PubMed ID: 16250242 [TBL] [Abstract][Full Text] [Related]
38. Broad-spectrum and durability: understanding of quantitative disease resistance. Kou Y; Wang S Curr Opin Plant Biol; 2010 Apr; 13(2):181-5. PubMed ID: 20097118 [TBL] [Abstract][Full Text] [Related]