BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 15922110)

  • 1. The Oncogenic Action of NRF2 Depends on De-glycation by Fructosamine-3-Kinase.
    Sanghvi VR; Leibold J; Mina M; Mohan P; Berishaj M; Li Z; Miele MM; Lailler N; Zhao C; de Stanchina E; Viale A; Akkari L; Lowe SW; Ciriello G; Hendrickson RC; Wendel HG
    Cell; 2019 Aug; 178(4):807-819.e21. PubMed ID: 31398338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Azidoribose Probe to Track Ketoamine Adducts in Histone Ribose Glycation.
    Maksimovic I; Zheng Q; Trujillo MN; Galligan JJ; David Y
    J Am Chem Soc; 2020 Jun; 142(22):9999-10007. PubMed ID: 32390412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1-Amino-1-deoxy-d-fructose ("fructosamine") and its derivatives: An update.
    Mossine VV; Mawhinney TP
    Adv Carbohydr Chem Biochem; 2023; 83():1-26. PubMed ID: 37968036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening fructosamine-3-kinase (FN3K) inhibitors, a deglycating enzyme of oncogenic Nrf2: Human FN3K homology modelling, docking and molecular dynamics simulations.
    Beeraka NM; Zhang J; Mandal S; Vikram P R H; Liu J; B M N; Zhao D; Vishwanath P; B M G; Fan R
    PLoS One; 2023; 18(11):e0283705. PubMed ID: 37910519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1-Amino-1-deoxy-d-fructose ("fructosamine") and its derivatives.
    Mossine VV; Mawhinney TP
    Adv Carbohydr Chem Biochem; 2023; 83():27-132. PubMed ID: 37968038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FN3K expression in COPD: a potential comorbidity factor for cardiovascular disease.
    Alderawi A; Caramori G; Baker EH; Hitchings AW; Rahman I; Rossios C; Adcock I; Cassolari P; Papi A; Ortega VE; Curtis JL; Dunmore S; Kirkham P
    BMJ Open Respir Res; 2020 Nov; 7(1):. PubMed ID: 33208304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-omics reveals new links between Fructosamine-3-Kinase (FN3K) and core metabolic pathways.
    Shrestha S; Taujale R; Katiyar S; Kannan N
    NPJ Syst Biol Appl; 2024 Jun; 10(1):64. PubMed ID: 38830903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The multiple Maillard reactions of ribose and deoxyribose sugars and sugar phosphates.
    Munanairi A; O'Banion SK; Gamble R; Breuer E; Harris AW; Sandwick RK
    Carbohydr Res; 2007 Dec; 342(17):2575-92. PubMed ID: 17850774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The NMR signature of maltose-based glycation in full-length proteins.
    Defant P; Regl C; Huber CG; Schubert M
    J Biomol NMR; 2024 Mar; 78(1):61-72. PubMed ID: 38114873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unambiguous Identification of Glucose-Induced Glycation in mAbs and other Proteins by NMR Spectroscopy.
    Moises JE; Regl C; Hinterholzer A; Huber CG; Schubert M
    Pharm Res; 2023 Jun; 40(6):1341-1353. PubMed ID: 36510116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial enzymes that can deglycate glucose- and fructose-modified lysine.
    Monnier VM
    Biochem J; 2005 Dec; 392(Pt 2):e1-3. PubMed ID: 16293106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Illuminating the functions of the understudied Fructosamine-3-kinase (FN3K) using a multi-omics approach reveals new links to lipid, carbon, and co-factor metabolic pathways.
    Shrestha S; Taujale R; Katiyar S; Kannan N
    Res Sq; 2024 Feb; ():. PubMed ID: 38410452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonenzymatic glycation as a tunable technique to modify plant proteins: A comprehensive review on reaction process, mechanism, conjugate structure, and functionality.
    Gao K; Zha F; Rao J; Chen B
    Compr Rev Food Sci Food Saf; 2024 Jan; 23(1):e13269. PubMed ID: 38284590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical interaction between the sugar moieties in N, N-di-glycated alanine derivatives.
    Kim ES; Yaylayan V
    Carbohydr Res; 2024 Jun; 540():109139. PubMed ID: 38728964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of Free Glycated Amines and Glycated Urea in Diabetic Plasma: Potential Implications in Diabetes.
    Shaikh RQ; Das S; Chaurasiya A; Ashtamy MG; Sheikh AB; Fernandes M; Tiwari S; Unnikrishnan AG; Kulkarni MJ
    ACS Omega; 2024 Jun; 9(23):24907-24915. PubMed ID: 38882103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconsidering the role of protein glycation in disease.
    Trujillo MN; Galligan JJ
    Nat Chem Biol; 2023 Aug; 19(8):922-927. PubMed ID: 37430113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual Glycation-Inflammation Modulation, DPP-IV and Pancraetic Lipase Inhibitory Potentials and Antiproliferative Activity of Novel Fluoroquinolones.
    Arabiyat S; Kasabri V; Al-Hiari Y; Al-Masri I; Alalawi S; Bustanji Y
    Asian Pac J Cancer Prev; 2019 Aug; 20(8):2503-2514. PubMed ID: 31450926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic toxicity of glucose, due to non-enzymatic glycation, is controlled in-vivo by deglycation systems including: FN3K-mediated deglycation of fructosamines and transglycation of aldosamines.
    Szwergold BS
    Med Hypotheses; 2005; 65(2):337-48. PubMed ID: 15922110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alpha-thiolamines such as cysteine and cysteamine act as effective transglycating agents due to formation of irreversible thiazolidine derivatives.
    Szwergold BS
    Med Hypotheses; 2006; 66(4):698-707. PubMed ID: 16359826
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.