BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 1592241)

  • 1. Meiosis in Saccharomyces cerevisiae mutants lacking the centromere-binding protein CP1.
    Masison DC; Baker RE
    Genetics; 1992 May; 131(1):43-53. PubMed ID: 1592241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of the gene encoding the Saccharomyces cerevisiae centromere-binding protein CP1.
    Baker RE; Masison DC
    Mol Cell Biol; 1990 Jun; 10(6):2458-67. PubMed ID: 2188087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations synthetically lethal with cep1 target S. cerevisiae kinetochore components.
    Baker RE; Harris K; Zhang K
    Genetics; 1998 May; 149(1):73-85. PubMed ID: 9584087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Computational Approach to Estimating Nondisjunction Frequency in Saccharomyces cerevisiae.
    Chu DB; Burgess SM
    G3 (Bethesda); 2016 Jan; 6(3):669-82. PubMed ID: 26747203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational analysis of the Saccharomyces cerevisiae general regulatory factor CP1.
    Masison DC; O'Connell KF; Baker RE
    Nucleic Acids Res; 1993 Aug; 21(17):4133-41. PubMed ID: 8371988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible cross-regulation of phosphate and sulfate metabolism in Saccharomyces cerevisiae.
    O'Connell KF; Baker RE
    Genetics; 1992 Sep; 132(1):63-73. PubMed ID: 1398064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Centromere-proximal crossovers are associated with precocious separation of sister chromatids during meiosis in Saccharomyces cerevisiae.
    Rockmill B; Voelkel-Meiman K; Roeder GS
    Genetics; 2006 Dec; 174(4):1745-54. PubMed ID: 17028345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Point mutations that separate the role of Saccharomyces cerevisiae centromere binding factor 1 in chromosome segregation from its role in transcriptional activation.
    Foreman PK; Davis RW
    Genetics; 1993 Oct; 135(2):287-96. PubMed ID: 8243994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C.
    Meluh PB; Koshland D
    Mol Biol Cell; 1995 Jul; 6(7):793-807. PubMed ID: 7579695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defects in components of the proteasome enhance transcriptional silencing at fission yeast centromeres and impair chromosome segregation.
    Javerzat JP; McGurk G; Cranston G; Barreau C; Bernard P; Gordon C; Allshire R
    Mol Cell Biol; 1999 Jul; 19(7):5155-65. PubMed ID: 10373564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and cloning of the CHL4 gene controlling chromosome segregation in yeast.
    Kouprina N; Kirillov A; Kroll E; Koryabin M; Shestopalov B; Bannikov V; Zakharyev V; Larionov V
    Genetics; 1993 Oct; 135(2):327-41. PubMed ID: 8243998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cis-acting determinants affecting centromere function, sister-chromatid cohesion and reciprocal recombination during meiosis in Saccharomyces cerevisiae.
    Sears DD; Hegemann JH; Shero JH; Hieter P
    Genetics; 1995 Mar; 139(3):1159-73. PubMed ID: 7768430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the Saccharomyces cerevisiae general regulatory factor CP1 in methionine biosynthetic gene transcription.
    O'Connell KF; Surdin-Kerjan Y; Baker RE
    Mol Cell Biol; 1995 Apr; 15(4):1879-88. PubMed ID: 7891681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CPF1, a yeast protein which functions in centromeres and promoters.
    Mellor J; Jiang W; Funk M; Rathjen J; Barnes CA; Hinz T; Hegemann JH; Philippsen P
    EMBO J; 1990 Dec; 9(12):4017-26. PubMed ID: 2249662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss.
    Chambers SR; Hunter N; Louis EJ; Borts RH
    Mol Cell Biol; 1996 Nov; 16(11):6110-20. PubMed ID: 8887641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo characterization of the Saccharomyces cerevisiae centromere DNA element I, a binding site for the helix-loop-helix protein CPF1.
    Niedenthal R; Stoll R; Hegemann JH
    Mol Cell Biol; 1991 Jul; 11(7):3545-53. PubMed ID: 2046668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maintenance of cohesin at centromeres after meiosis I in budding yeast requires a kinetochore-associated protein related to MEI-S332.
    Katis VL; Galova M; Rabitsch KP; Gregan J; Nasmyth K
    Curr Biol; 2004 Apr; 14(7):560-72. PubMed ID: 15062096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast centromere binding protein CBF1, of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy.
    Cai M; Davis RW
    Cell; 1990 May; 61(3):437-46. PubMed ID: 2185892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional interaction between the CSE2 gene product and centromeres in Saccharomyces cerevisiae.
    Xiao ZX; Fitzgerald-Hayes M
    J Mol Biol; 1995 Apr; 248(2):255-63. PubMed ID: 7739039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional centromere binding factor 1 is essential for chromosome segregation in the human pathogenic yeast Candida glabrata.
    Stoyan T; Gloeckner G; Diekmann S; Carbon J
    Mol Cell Biol; 2001 Aug; 21(15):4875-88. PubMed ID: 11438645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.