These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Prolonged residence time of a noncovalent molecular adapter, beta-cyclodextrin, within the lumen of mutant alpha-hemolysin pores. Gu LQ; Cheley S; Bayley H J Gen Physiol; 2001 Nov; 118(5):481-94. PubMed ID: 11696607 [TBL] [Abstract][Full Text] [Related]
6. Protein electrostriction: a possibility of elastic deformation of the alpha-hemolysin channel by the applied field. Krasilnikov OV; Merzlyak PG; Yuldasheva LN; Capistrano MF Eur Biophys J; 2005 Nov; 34(8):997-1006. PubMed ID: 16021445 [TBL] [Abstract][Full Text] [Related]
7. Interaction of the noncovalent molecular adapter, beta-cyclodextrin, with the staphylococcal alpha-hemolysin pore. Gu LQ; Bayley H Biophys J; 2000 Oct; 79(4):1967-75. PubMed ID: 11023901 [TBL] [Abstract][Full Text] [Related]
8. Controlling a single protein in a nanopore through electrostatic traps. Mohammad MM; Prakash S; Matouschek A; Movileanu L J Am Chem Soc; 2008 Mar; 130(12):4081-8. PubMed ID: 18321107 [TBL] [Abstract][Full Text] [Related]
9. Protein nanopore-based, single-molecule exploration of copper binding to an antimicrobial-derived, histidine-containing chimera peptide. Mereuta L; Schiopu I; Asandei A; Park Y; Hahm KS; Luchian T Langmuir; 2012 Dec; 28(49):17079-91. PubMed ID: 23140333 [TBL] [Abstract][Full Text] [Related]
10. Temperature-responsive protein pores. Jung Y; Bayley H; Movileanu L J Am Chem Soc; 2006 Nov; 128(47):15332-40. PubMed ID: 17117886 [TBL] [Abstract][Full Text] [Related]
11. Perturbation of a lipid membrane by amphipathic peptides and its role in pore formation. Zemel A; Ben-Shaul A; May S Eur Biophys J; 2005 May; 34(3):230-42. PubMed ID: 15619088 [TBL] [Abstract][Full Text] [Related]
12. Impact of distant charge reversals within a robust beta-barrel protein pore. Mohammad MM; Movileanu L J Phys Chem B; 2010 Jul; 114(26):8750-9. PubMed ID: 20540583 [TBL] [Abstract][Full Text] [Related]
13. Single polymer molecules in a protein nanopore in the limit of a strong polymer-pore attraction. Krasilnikov OV; Rodrigues CG; Bezrukov SM Phys Rev Lett; 2006 Jul; 97(1):018301. PubMed ID: 16907416 [TBL] [Abstract][Full Text] [Related]
15. Decreasing Transmembrane Segment Length Greatly Decreases Perfringolysin O Pore Size. Lin Q; Wang T; Li H; London E J Membr Biol; 2015 Jun; 248(3):517-27. PubMed ID: 25850715 [TBL] [Abstract][Full Text] [Related]
16. Polymeric nonelectrolytes to probe pore geometry: application to the alpha-toxin transmembrane channel. Merzlyak PG; Yuldasheva LN; Rodrigues CG; Carneiro CM; Krasilnikov OV; Bezrukov SM Biophys J; 1999 Dec; 77(6):3023-33. PubMed ID: 10585924 [TBL] [Abstract][Full Text] [Related]
17. The internal cavity of the staphylococcal alpha-hemolysin pore accommodates approximately 175 exogenous amino acid residues. Jung Y; Cheley S; Braha O; Bayley H Biochemistry; 2005 Jun; 44(25):8919-29. PubMed ID: 15966717 [TBL] [Abstract][Full Text] [Related]
18. Study of peptide transport through engineered protein channels. Zhao Q; Jayawardhana DA; Wang D; Guan X J Phys Chem B; 2009 Mar; 113(11):3572-8. PubMed ID: 19231820 [TBL] [Abstract][Full Text] [Related]
19. Excursion of a single polypeptide into a protein pore: simple physics, but complicated biology. Mohammad MM; Movileanu L Eur Biophys J; 2008 Jul; 37(6):913-25. PubMed ID: 18368402 [TBL] [Abstract][Full Text] [Related]
20. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Song L; Hobaugh MR; Shustak C; Cheley S; Bayley H; Gouaux JE Science; 1996 Dec; 274(5294):1859-66. PubMed ID: 8943190 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]