These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 15923222)

  • 21. A functional protein pore with a "retro" transmembrane domain.
    Cheley S; Braha O; Lu X; Conlan S; Bayley H
    Protein Sci; 1999 Jun; 8(6):1257-67. PubMed ID: 10386875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transport of alpha-helical peptides through alpha-hemolysin and aerolysin pores.
    Stefureac R; Long YT; Kraatz HB; Howard P; Lee JS
    Biochemistry; 2006 Aug; 45(30):9172-9. PubMed ID: 16866363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An intermediate in the assembly of a pore-forming protein trapped with a genetically-engineered switch.
    Walker B; Braha O; Cheley S; Bayley H
    Chem Biol; 1995 Feb; 2(2):99-105. PubMed ID: 9383410
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative understanding of pH- and salt-mediated conformational folding of histidine-containing, β-hairpin-like peptides, through single-molecule probing with protein nanopores.
    Mereuta L; Asandei A; Seo CH; Park Y; Luchian T
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13242-56. PubMed ID: 25069106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Blocking of Single α-Hemolysin Pore by Rhodamine Derivatives.
    Rokitskaya TI; Nazarov PA; Golovin AV; Antonenko YN
    Biophys J; 2017 Jun; 112(11):2327-2335. PubMed ID: 28591605
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energetics and self-assembly of amphipathic peptide pores in lipid membranes.
    Zemel A; Fattal DR; Ben-Shaul A
    Biophys J; 2003 Apr; 84(4):2242-55. PubMed ID: 12668433
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of arginine-rich cell penetrating peptides on membrane pore formation and life-times: a molecular simulation study.
    Sun D; Forsman J; Lund M; Woodward CE
    Phys Chem Chem Phys; 2014 Oct; 16(38):20785-95. PubMed ID: 25166723
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore.
    Movileanu L; Howorka S; Braha O; Bayley H
    Nat Biotechnol; 2000 Oct; 18(10):1091-5. PubMed ID: 11017049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stochastic sensing of TNT with a genetically engineered pore.
    Guan X; Gu LQ; Cheley S; Braha O; Bayley H
    Chembiochem; 2005 Oct; 6(10):1875-81. PubMed ID: 16118820
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane.
    Rajapaksha SP; Pal N; Zheng D; Lu HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052719. PubMed ID: 26651735
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing distance and electrical potential within a protein pore with tethered DNA.
    Howorka S; Bayley H
    Biophys J; 2002 Dec; 83(6):3202-10. PubMed ID: 12496089
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics simulations of a stretch-activated channel inhibitor GsMTx4 with lipid membranes: two binding modes and effects of lipid structure.
    Nishizawa M; Nishizawa K
    Biophys J; 2007 Jun; 92(12):4233-43. PubMed ID: 17384064
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reversal of charge selectivity in transmembrane protein pores by using noncovalent molecular adapters.
    Gu LQ; Dalla Serra M; Vincent JB; Vigh G; Cheley S; Braha O; Bayley H
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):3959-64. PubMed ID: 10760267
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformation and environment of channel-forming peptides: a simulation study.
    Johnston JM; Cook GA; Tomich JM; Sansom MS
    Biophys J; 2006 Mar; 90(6):1855-64. PubMed ID: 16387778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bilayer lipid composition modulates the activity of dermaseptins, polycationic antimicrobial peptides.
    Duclohier H
    Eur Biophys J; 2006 May; 35(5):401-9. PubMed ID: 16477458
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electroosmotic enhancement of the binding of a neutral molecule to a transmembrane pore.
    Gu LQ; Cheley S; Bayley H
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15498-503. PubMed ID: 14676320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ion permeation through the alpha-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory.
    Noskov SY; Im W; Roux B
    Biophys J; 2004 Oct; 87(4):2299-309. PubMed ID: 15454431
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photoisomerization of an individual azobenzene molecule in water: an on-off switch triggered by light at a fixed wavelength.
    Loudwig S; Bayley H
    J Am Chem Soc; 2006 Sep; 128(38):12404-5. PubMed ID: 16984176
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The transmembrane domain of the acetylcholine receptor: insights from simulations on synthetic peptide models.
    Saiz L; Klein ML
    Biophys J; 2005 Feb; 88(2):959-70. PubMed ID: 15556982
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA-assisted oligomerization of pore-forming toxin monomers into precisely-controlled protein channels.
    Henning-Knechtel A; Knechtel J; Magzoub M
    Nucleic Acids Res; 2017 Dec; 45(21):12057-12068. PubMed ID: 29088457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.