These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 15923222)

  • 41. Subunit dimers of alpha-hemolysin expand the engineering toolbox for protein nanopores.
    Hammerstein AF; Jayasinghe L; Bayley H
    J Biol Chem; 2011 Apr; 286(16):14324-34. PubMed ID: 21324910
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Arresting and releasing Staphylococcal alpha-hemolysin at intermediate stages of pore formation by engineered disulfide bonds.
    Kawate T; Gouaux E
    Protein Sci; 2003 May; 12(5):997-1006. PubMed ID: 12717022
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Capture of a single molecule in a nanocavity.
    Gu LQ; Cheley S; Bayley H
    Science; 2001 Jan; 291(5504):636-40. PubMed ID: 11158673
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interaction of zwitterionic penicillins with the OmpF channel facilitates their translocation.
    Danelon C; Nestorovich EM; Winterhalter M; Ceccarelli M; Bezrukov SM
    Biophys J; 2006 Mar; 90(5):1617-27. PubMed ID: 16339889
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional truncated membrane pores.
    Stoddart D; Ayub M; Höfler L; Raychaudhuri P; Klingelhoefer JW; Maglia G; Heron A; Bayley H
    Proc Natl Acad Sci U S A; 2014 Feb; 111(7):2425-30. PubMed ID: 24469792
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Voltage-driven DNA translocations through a nanopore.
    Meller A; Nivon L; Branton D
    Phys Rev Lett; 2001 Apr; 86(15):3435-8. PubMed ID: 11327989
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 5- and 4'-Hydroxylated flavonoids affect voltage gating of single alpha-hemolysin pore.
    Ostroumova OS; Efimova SS; Schagina LV
    Biochim Biophys Acta; 2011 Aug; 1808(8):2051-8. PubMed ID: 21527242
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation.
    Chen FY; Lee MT; Huang HW
    Biophys J; 2003 Jun; 84(6):3751-8. PubMed ID: 12770881
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Redox regulation of CLIC1 by cysteine residues associated with the putative channel pore.
    Singh H; Ashley RH
    Biophys J; 2006 Mar; 90(5):1628-38. PubMed ID: 16339885
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The properties of Bacillus cereus hemolysin II pores depend on environmental conditions.
    Andreeva ZI; Nesterenko VF; Fomkina MG; Ternovsky VI; Suzina NE; Bakulina AY; Solonin AS; Sineva EV
    Biochim Biophys Acta; 2007 Feb; 1768(2):253-63. PubMed ID: 17173854
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Location of a constriction in the lumen of a transmembrane pore by targeted covalent attachment of polymer molecules.
    Movileanu L; Cheley S; Howorka S; Braha O; Bayley H
    J Gen Physiol; 2001 Mar; 117(3):239-52. PubMed ID: 11222628
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single-molecule observation of the catalytic subunit of cAMP-dependent protein kinase binding to an inhibitor peptide.
    Xie H; Braha O; Gu LQ; Cheley S; Bayley H
    Chem Biol; 2005 Jan; 12(1):109-20. PubMed ID: 15664520
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Threading synthetic polyelectrolytes through protein pores.
    Murphy RJ; Muthukumar M
    J Chem Phys; 2007 Feb; 126(5):051101. PubMed ID: 17302462
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genetically engineered metal ion binding sites on the outside of a Channel's transmembrane beta-barrel.
    Kasianowicz JJ; Burden DL; Han LC; Cheley S; Bayley H
    Biophys J; 1999 Feb; 76(2):837-45. PubMed ID: 9929485
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Paradoxical lipid dependence of pores formed by the Escherichia coli alpha-hemolysin in planar phospholipid bilayer membranes.
    Bakás L; Chanturiya A; Herlax V; Zimmerberg J
    Biophys J; 2006 Nov; 91(10):3748-55. PubMed ID: 16935953
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Coarse-grained simulations of hemolytic peptide δ-lysin interacting with a POPC bilayer.
    King MJ; Bennett AL; Almeida PF; Lee HS
    Biochim Biophys Acta; 2016 Dec; 1858(12):3182-3194. PubMed ID: 27720634
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effective charge and free energy of DNA inside an ion channel.
    Zhang J; Shklovskii BI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021906. PubMed ID: 17358366
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stochastic sensing of nanomolar inositol 1,4,5-trisphosphate with an engineered pore.
    Cheley S; Gu LQ; Bayley H
    Chem Biol; 2002 Jul; 9(7):829-38. PubMed ID: 12144927
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Architecture of the Alzheimer's A beta P ion channel pore.
    Arispe N
    J Membr Biol; 2004 Jan; 197(1):33-48. PubMed ID: 15014916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.