BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15923232)

  • 1. The counterbend phenomenon in dynein-disabled rat sperm flagella and what it reveals about the interdoublet elasticity.
    Lindemann CB; Macauley LJ; Lesich KA
    Biophys J; 2005 Aug; 89(2):1165-74. PubMed ID: 15923232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical properties of the passive sea urchin sperm flagellum.
    Pelle DW; Brokaw CJ; Lesich KA; Lindemann CB
    Cell Motil Cytoskeleton; 2009 Sep; 66(9):721-35. PubMed ID: 19536829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural-functional relationships of the dynein, spokes, and central-pair projections predicted from an analysis of the forces acting within a flagellum.
    Lindemann CB
    Biophys J; 2003 Jun; 84(6):4115-26. PubMed ID: 12770914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of the force produced by an intact bull sperm flagellum in isometric arrest and estimation of the dynein stall force.
    Schmitz KA; Holcomb-Wygle DL; Oberski DJ; Lindemann CB
    Biophys J; 2000 Jul; 79(1):468-78. PubMed ID: 10866972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct measurement of the passive stiffness of rat sperm and implications to the mechanism of the calcium response.
    Schmitz-Lesich KA; Lindemann CB
    Cell Motil Cytoskeleton; 2004 Nov; 59(3):169-79. PubMed ID: 15378661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanics of the eukaryotic flagellar axoneme: Evidence for structural distortion during bending.
    Lesich KA; dePinho TG; Pelle DW; Lindemann CB
    Cytoskeleton (Hoboken); 2016 May; 73(5):233-45. PubMed ID: 27001352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional significance of the outer dense fibers of mammalian sperm examined by computer simulations with the geometric clutch model.
    Lindemann CB
    Cell Motil Cytoskeleton; 1996; 34(4):258-70. PubMed ID: 8871813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology of nexin links in relation to interdoublet sliding in the sperm flagellum.
    Bozkurt HH; Woolley DM
    Cell Motil Cytoskeleton; 1993; 24(2):109-18. PubMed ID: 8440024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basal sliding and the mechanics of oscillation in a mammalian sperm flagellum.
    Vernon GG; Woolley DM
    Biophys J; 2004 Dec; 87(6):3934-44. PubMed ID: 15465868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of flagellar and ciliary functioning which uses the forces transverse to the axoneme as the regulator of dynein activation.
    Lindemann CB
    Cell Motil Cytoskeleton; 1994; 29(2):141-54. PubMed ID: 7820864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of flagellar oscillation-bending-induced switching of dynein activity in elastase-treated axonemes of sea urchin sperm.
    Hayashi S; Shingyoji C
    J Cell Sci; 2008 Sep; 121(Pt 17):2833-43. PubMed ID: 18682495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ni2+ inhibition induces asymmetry in axonemal functioning and bend initiation of bull sperm.
    Lindemann CB; Walker JM; Kanous KS
    Cell Motil Cytoskeleton; 1995; 30(1):8-16. PubMed ID: 7728871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic extension and jump of the flagellar nexin links: a theoretical mechanical cycle.
    Cibert C
    Cell Motil Cytoskeleton; 2001 Jul; 49(3):161-75. PubMed ID: 11668585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional deficiencies and a reduced response to calcium in the flagellum of mouse sperm lacking SPAG16L.
    Lesich KA; Zhang Z; Kelsch CB; Ponichter KL; Strauss JF; Lindemann CB
    Biol Reprod; 2010 Apr; 82(4):736-44. PubMed ID: 20042536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulation of flagellar movement X: doublet pair splitting and bend propagation modeled using stochastic dynein kinetics.
    Brokaw CJ
    Cytoskeleton (Hoboken); 2014 Apr; 71(4):273-84. PubMed ID: 24574072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The flagellar beat of rat sperm is organized by the interaction of two functionally distinct populations of dynein bridges with a stable central axonemal partition.
    Lindemann CB; Orlando A; Kanous KS
    J Cell Sci; 1992 Jun; 102 ( Pt 2)():249-60. PubMed ID: 1400632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring the regulation of dynein activity during flagellar motility.
    Shingyoji C
    Methods Enzymol; 2013; 524():147-69. PubMed ID: 23498739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of unstable modes distinguishes mathematical models of flagellar motion.
    Bayly PV; Wilson KS
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25833248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing the geometric clutch hypothesis.
    Lindemann CB
    Biol Cell; 2004 Dec; 96(9):681-90. PubMed ID: 15567522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional anatomy of the mammalian sperm flagellum.
    Lindemann CB; Lesich KA
    Cytoskeleton (Hoboken); 2016 Nov; 73(11):652-669. PubMed ID: 27712041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.