BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 1592354)

  • 1. Reduced activity of the electron transport chain in liver mitochondria isolated from rats with secondary biliary cirrhosis.
    Krähenbühl S; Stucki J; Reichen J
    Hepatology; 1992 Jun; 15(6):1160-6. PubMed ID: 1592354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereological and functional analysis of liver mitochondria from rats with secondary biliary cirrhosis: impaired mitochondrial metabolism and increased mitochondrial content per hepatocyte.
    Krähenbühl S; Krähenbühl-Glauser S; Stucki J; Gehr P; Reichen J
    Hepatology; 1992 Jun; 15(6):1167-72. PubMed ID: 1592355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of impaired hepatic fatty acid metabolism in rats with long-term bile duct ligation.
    Krähenbühl S; Talos C; Reichen J
    Hepatology; 1994 May; 19(5):1272-81. PubMed ID: 8175152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversibility of hepatic mitochondrial damage in rats with long-term cholestasis.
    Krähenbühl L; Schäfer M; Krähenbühl S
    J Hepatol; 1998 Jun; 28(6):1000-7. PubMed ID: 9672176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fuel homeostasis and carnitine metabolism in rats with secondary biliary cirrhosis.
    Krahenbuhl S; Brass EP
    Hepatology; 1991 Nov; 14(5):927-34. PubMed ID: 1937397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity of bile acids on the electron transport chain of isolated rat liver mitochondria.
    Krähenbühl S; Talos C; Fischer S; Reichen J
    Hepatology; 1994 Feb; 19(2):471-9. PubMed ID: 7904981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative-stress-related changes in the livers of bile-duct-ligated rats.
    Huang YT; Hsu YC; Chen CJ; Liu CT; Wei YH
    J Biomed Sci; 2003; 10(2):170-8. PubMed ID: 12595753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation of mitochondrial metabolism in liver cirrhosis. Different strategies to maintain a vital function.
    Krähenbühl S; Reichen J
    Scand J Gastroenterol Suppl; 1992; 193():90-6. PubMed ID: 1290065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutathione status in liver and plasma during development of biliary cirrhosis after bile duct ligation.
    Purucker E; Winograd R; Roeb E; Matern S
    Res Exp Med (Berl); 1998 Dec; 198(4):167-74. PubMed ID: 9879595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced antioxidative capacity in liver mitochondria from bile duct ligated rats.
    Krähenbühl S; Talos C; Lauterburg BH; Reichen J
    Hepatology; 1995 Aug; 22(2):607-12. PubMed ID: 7635430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of development on the functional and histological changes induced by bile-duct ligation in the rat.
    Zimmermann H; Blaser H; Zimmermann A; Reichen J
    J Hepatol; 1994 Feb; 20(2):231-9. PubMed ID: 8006404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial function in carbon tetrachloride-induced cirrhosis in the rat. Qualitative and quantitative defects.
    Krähenbühl S; Stucki J; Reichen J
    Biochem Pharmacol; 1989 May; 38(10):1583-8. PubMed ID: 2730674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes of hepatic fatty acid metabolism produced by chronic thioacetamide administration in rats.
    Nozu F; Takeyama N; Tanaka T
    Hepatology; 1992 Jun; 15(6):1099-106. PubMed ID: 1592350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of antipyrine in vivo in two rat models of liver cirrhosis. Its relationship to intrinsic clearance in vitro and microsomal membrane lipid composition.
    Buters JT; Zysset T; Reichen J
    Biochem Pharmacol; 1993 Sep; 46(6):983-91. PubMed ID: 8216358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of apoptosis in the remodeling of cholestatic liver injury following release of the mechanical stress.
    Costa AM; Tuchweber B; Lamireau T; Yousef IM; Balabaud C; Rosenbaum J; Desmoulière A
    Virchows Arch; 2003 Apr; 442(4):372-80. PubMed ID: 12715172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial biogenesis fails in secondary biliary cirrhosis in rats leading to mitochondrial DNA depletion and deletions.
    Arduini A; Serviddio G; Escobar J; Tormos AM; Bellanti F; Viña J; Monsalve M; Sastre J
    Am J Physiol Gastrointest Liver Physiol; 2011 Jul; 301(1):G119-27. PubMed ID: 21415417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired ketogenesis is a major mechanism for disturbed hepatic fatty acid metabolism in rats with long-term cholestasis and after relief of biliary obstruction.
    Lang C; Berardi S; Schäfer M; Serra D; Hegardt FG; Krähenbühl L; Krähenbühl S
    J Hepatol; 2002 Nov; 37(5):564-71. PubMed ID: 12399220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hepatic stellate cells (Ito cells) but not collagen IV may partly be responsible for lower portal pressure after reversing secondary biliary cirrhosis in the rat.
    Zimmermann H; Fellay M; Zimmermann A
    J Hepatol; 1997 Jan; 26(1):158-66. PubMed ID: 9148007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between hepatic mitochondrial functions in vivo and in vitro in rats with carbon tetrachloride-induced liver cirrhosis.
    Krähenbühl L; Ledermann M; Lang C; Krähenbühl S
    J Hepatol; 2000 Aug; 33(2):216-23. PubMed ID: 10952239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of adenosine administration on the function and membrane composition of liver mitochondria in carbon tetrachloride-induced cirrhosis.
    Hernández-Muñoz R; Díaz-Muñoz M; Chagoya de Sánchez V
    Arch Biochem Biophys; 1992 Apr; 294(1):160-7. PubMed ID: 1312801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.