BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

924 related articles for article (PubMed ID: 15923634)

  • 1. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae.
    Doudican NA; Song B; Shadel GS; Doetsch PW
    Mol Cell Biol; 2005 Jun; 25(12):5196-204. PubMed ID: 15923634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins.
    O'Rourke TW; Doudican NA; Mackereth MD; Doetsch PW; Shadel GS
    Mol Cell Biol; 2002 Jun; 22(12):4086-93. PubMed ID: 12024022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Msh1p counteracts oxidative lesion-induced instability of mtDNA and stimulates mitochondrial recombination in Saccharomyces cerevisiae.
    Kaniak A; Dzierzbicki P; Rogowska AT; Malc E; Fikus M; Ciesla Z
    DNA Repair (Amst); 2009 Mar; 8(3):318-29. PubMed ID: 19056520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The generation of oxidative stress-induced rearrangements in Saccharomyces cerevisiae mtDNA is dependent on the Nuc1 (EndoG/ExoG) nuclease and is enhanced by inactivation of the MRX complex.
    Dzierzbicki P; Kaniak-Golik A; Malc E; Mieczkowski P; Ciesla Z
    Mutat Res; 2012 Dec; 740(1-2):21-33. PubMed ID: 23276591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential involvement of the related DNA helicases Pif1p and Rrm3p in mtDNA point mutagenesis and stability.
    O'Rourke TW; Doudican NA; Zhang H; Eaton JS; Doetsch PW; Shadel GS
    Gene; 2005 Jul; 354():86-92. PubMed ID: 15907372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ntg1p, the base excision repair protein, generates mutagenic intermediates in yeast mitochondrial DNA.
    Phadnis N; Mehta R; Meednu N; Sia EA
    DNA Repair (Amst); 2006 Jul; 5(7):829-39. PubMed ID: 16730479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccharomyces cerevisiae Ntg1p and Ntg2p: broad specificity N-glycosylases for the repair of oxidative DNA damage in the nucleus and mitochondria.
    You HJ; Swanson RL; Harrington C; Corbett AH; Jinks-Robertson S; Sentürker S; Wallace SS; Boiteux S; Dizdaroglu M; Doetsch PW
    Biochemistry; 1999 Aug; 38(35):11298-306. PubMed ID: 10471279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of the 20S proteasome maturase, Ump1p, leads to the instability of mtDNA in Saccharomyces cerevisiae.
    Malc E; Dzierzbicki P; Kaniak A; Skoneczna A; Ciesla Z
    Mutat Res; 2009 Oct; 669(1-2):95-103. PubMed ID: 19467248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of Pif1p, a DNA helicase in Saccharomyces cerevisiae, in maintaining mitochondrial DNA.
    Cheng X; Dunaway S; Ivessa AS
    Mitochondrion; 2007 May; 7(3):211-22. PubMed ID: 17257907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic compartmentalization of base excision repair proteins in response to nuclear and mitochondrial oxidative stress.
    Griffiths LM; Swartzlander D; Meadows KL; Wilkinson KD; Corbett AH; Doetsch PW
    Mol Cell Biol; 2009 Feb; 29(3):794-807. PubMed ID: 19029246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crosstalk between mitochondrial stress signals regulates yeast chronological lifespan.
    Schroeder EA; Shadel GS
    Mech Ageing Dev; 2014 Jan; 135():41-9. PubMed ID: 24373996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repair of oxidative damage in mitochondrial DNA of Saccharomyces cerevisiae: involvement of the MSH1-dependent pathway.
    Dzierzbicki P; Koprowski P; Fikus MU; Malc E; Ciesla Z
    DNA Repair (Amst); 2004 Apr; 3(4):403-11. PubMed ID: 15010316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae.
    Swanson RL; Morey NJ; Doetsch PW; Jinks-Robertson S
    Mol Cell Biol; 1999 Apr; 19(4):2929-35. PubMed ID: 10082560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial DNA oxidative damage and mutagenesis in Saccharomyces cerevisiae.
    Griffiths LM; Doudican NA; Shadel GS; Doetsch PW
    Methods Mol Biol; 2009; 554():267-86. PubMed ID: 19513680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergism between base excision repair, mediated by the DNA glycosylases Ntg1 and Ntg2, and nucleotide excision repair in the removal of oxidatively damaged DNA bases in Saccharomyces cerevisiae.
    Gellon L; Barbey R; Auffret van der Kemp P; Thomas D; Boiteux S
    Mol Genet Genomics; 2001 Aug; 265(6):1087-96. PubMed ID: 11523781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A role for MHR1, a gene required for mitochondrial genetic recombination, in the repair of damage spontaneously introduced in yeast mtDNA.
    Ling F; Morioka H; Ohtsuka E; Shibata T
    Nucleic Acids Res; 2000 Dec; 28(24):4956-63. PubMed ID: 11121487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial DNA maintenance and bioenergetics.
    Stuart JA; Brown MF
    Biochim Biophys Acta; 2006 Feb; 1757(2):79-89. PubMed ID: 16473322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of mitochondrial dynamics on mitochondrial genome stability.
    Prevost CT; Peris N; Seger C; Pedeville DR; Wershing K; Sia EA; Sia RAL
    Curr Genet; 2018 Feb; 64(1):199-214. PubMed ID: 28573336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen species regulate DNA copy number in isolated yeast mitochondria by triggering recombination-mediated replication.
    Hori A; Yoshida M; Shibata T; Ling F
    Nucleic Acids Res; 2009 Feb; 37(3):749-61. PubMed ID: 19074198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defective mitochondrial gene expression results in reactive oxygen species-mediated inhibition of respiration and reduction of yeast life span.
    Bonawitz ND; Rodeheffer MS; Shadel GS
    Mol Cell Biol; 2006 Jul; 26(13):4818-29. PubMed ID: 16782871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.