These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
61 related articles for article (PubMed ID: 1592405)
1. An optimal controller for an electric ventricular-assist device: theory, implementation, and testing. Klute GK; Tasch U; Geselowitz DB IEEE Trans Biomed Eng; 1992 Apr; 39(4):394-403. PubMed ID: 1592405 [TBL] [Abstract][Full Text] [Related]
2. An adaptive aortic pressure observer for the Penn State Electric Ventricular Assist Device. Tasch U; Koontz JW; Ignatoski MA; Geselowitz DB IEEE Trans Biomed Eng; 1990 Apr; 37(4):374-83. PubMed ID: 2338350 [TBL] [Abstract][Full Text] [Related]
3. A motor-driven ventricular assist device controlled with an optical encoder system. Nakamura T; Hayashi K; Yamane H Biomed Mater Eng; 1993; 3(3):153-65. PubMed ID: 8193567 [TBL] [Abstract][Full Text] [Related]
4. Design of a DSP controller for an innovative ventricular assist system. Fu M; Xu L; Medvedev A; Smith WA; Golding LA ASAIO J; 1997; 43(5):M615-9. PubMed ID: 9360118 [TBL] [Abstract][Full Text] [Related]
5. A bridge from short-term to long-term left ventricular assist device--experimental verification of a physiological controller. Wu Y; Allaire PE; Tao G; Adams M; Liu Y; Wood H; Olsen DB Artif Organs; 2004 Oct; 28(10):927-32. PubMed ID: 15385000 [TBL] [Abstract][Full Text] [Related]
6. Continued development of the Nimbus/University of Pittsburgh (UOP) axial flow left ventricular assist system. Thomas DC; Butler KC; Taylor LP; Le Blanc P; Griffith BP; Kormos RL; Borovetz HS; Litwak P; Kameneva MV; Choi S; Burgreen GW; Wagner WR; Wu Z; Antaki JF ASAIO J; 1997; 43(5):M564-6. PubMed ID: 9360107 [TBL] [Abstract][Full Text] [Related]
8. Magnetic suspension controls for a new continuous flow ventricular assist device. Hilton EF; Allaire PE; Baloh MJ; Maslen E; Bearnson G; Khanwilkar P; Olsen D ASAIO J; 1997; 43(5):M598-603. PubMed ID: 9360115 [TBL] [Abstract][Full Text] [Related]
9. [Synthesis and evaluation of the adaptive control system for the ventricular assist device by using the circulatory system simulator]. Feng JS; Yoshizawa M; Takeda H; Miura M; Yanbe T; Katahira Y; Nitta S Iyodenshi To Seitai Kogaku; 1989 Mar; 27(1):8-18. PubMed ID: 2754864 [TBL] [Abstract][Full Text] [Related]
10. Progress in the development of a transcutaneously powered axial flow blood pump ventricular assist system. Parnis SM; Conger JL; Fuqua JM; Jarvik RK; Inman RW; Tamez D; Macris MP; Moore S; Jacobs G; Sweeney MJ; Frazier OH ASAIO J; 1997; 43(5):M576-80. PubMed ID: 9360110 [TBL] [Abstract][Full Text] [Related]
11. Improving outcomes with long-term "destination" therapy using left ventricular assist devices. Long JW; Healy AH; Rasmusson BY; Cowley CG; Nelson KE; Kfoury AG; Clayson SE; Reid BB; Moore SA; Blank DU; Renlund DG J Thorac Cardiovasc Surg; 2008 Jun; 135(6):1353-60; discussion 1360-1. PubMed ID: 18544385 [TBL] [Abstract][Full Text] [Related]
12. Implementation of a physiologically identified PD feedback controller for regulating the active ankle torque during quiet stance. Vette AH; Masani K; Popovic MR IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):235-43. PubMed ID: 17601193 [TBL] [Abstract][Full Text] [Related]
13. Performance prediction of a percutaneous ventricular assist system using nonlinear circuit analysis techniques. Yu YC; Simaan MA; Mushi SE; Zorn NV IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):419-29. PubMed ID: 18269977 [TBL] [Abstract][Full Text] [Related]
14. In vitro testing of a left ventricular assist device. Study of the effect of its control strategy on energetic relationships inside the left ventricle. Ferrari G; Gorczynska K; De Lazzari C; Grodzicki K; Mimmo R; Ambrosi D; Tosti G Technol Health Care; 1996 Mar; 3(4):231-9. PubMed ID: 8705398 [TBL] [Abstract][Full Text] [Related]
15. Hardware-in-the-loop-simulation of the cardiovascular system, with assist device testing application. Hanson BM; Levesley MC; Watterson K; Walker PG Med Eng Phys; 2007 Apr; 29(3):367-74. PubMed ID: 16815728 [TBL] [Abstract][Full Text] [Related]
16. A control system for rotary blood pumps based on suction detection. Ferreira A; Boston JR; Antaki JF IEEE Trans Biomed Eng; 2009 Mar; 56(3):656-65. PubMed ID: 19272919 [TBL] [Abstract][Full Text] [Related]
17. Power flow control based solely on slow feedback loop for heart pump applications. Wang B; Hu AP; Budgett D IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):279-86. PubMed ID: 23853149 [TBL] [Abstract][Full Text] [Related]
18. Design and control of the atrio-aortic left ventricular assist device based on O2 consumption. Drzewiecki GM; Pilla JJ; Welkowitz W IEEE Trans Biomed Eng; 1990 Feb; 37(2):128-37. PubMed ID: 2312137 [TBL] [Abstract][Full Text] [Related]
19. Physiologic-insensitive left ventricular assist predisposes right-sided circulatory failure: a pilot simulation and validation study. Reesink K; Dekker A; van der Nagel T; Blom H; Soemers C; Geskes G; Maessen J; van der Veen E Artif Organs; 2004 Oct; 28(10):933-9. PubMed ID: 15385001 [TBL] [Abstract][Full Text] [Related]
20. Joint angle control by FES using a feedback error learning controller. Kurosawa K; Futami R; Watanabe T; Hoshimiya N IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):359-71. PubMed ID: 16200759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]