These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Nonlinear alignment and averaging for estimating the evoked potential. Gupta L; Molfese DL; Tammana R; Simos PG IEEE Trans Biomed Eng; 1996 Apr; 43(4):348-56. PubMed ID: 8626184 [TBL] [Abstract][Full Text] [Related]
3. Weighted averaging of evoked potentials. Davila CE; Mobin MS IEEE Trans Biomed Eng; 1992 Apr; 39(4):338-45. PubMed ID: 1592399 [TBL] [Abstract][Full Text] [Related]
4. A method for real-time processing to study recovery functions of evoked potentials. Nakamura M; Shibasaki H; Nishida S; Neshige R IEEE Trans Biomed Eng; 1990 Jul; 37(7):738-40. PubMed ID: 2394463 [TBL] [Abstract][Full Text] [Related]
5. Orthonormal (Fourier and Walsh) models of time-varying evoked potentials in neurological injury. Thakor NV; Guo XR; Vaz CA; Laguna P; Jane R; Caminal P; Rix H; Hanley DF IEEE Trans Biomed Eng; 1993 Mar; 40(3):213-21. PubMed ID: 8335325 [TBL] [Abstract][Full Text] [Related]
6. Selecting the smoothing parameter for estimation of slowly changing evoked potential signals. Raz J; Turetsky B; Fein G Biometrics; 1989 Sep; 45(3):745-62. PubMed ID: 2790120 [TBL] [Abstract][Full Text] [Related]
7. General methodology for nonlinear modeling of neural systems with Poisson point-process inputs. Marmarelis VZ; Berger TW Math Biosci; 2005 Jul; 196(1):1-13. PubMed ID: 15963534 [TBL] [Abstract][Full Text] [Related]
8. Segmented matched filtering of single event related evoked potentials. Lange DH; Pratt H; Inbar GF IEEE Trans Biomed Eng; 1995 Mar; 42(3):317-21. PubMed ID: 7698788 [TBL] [Abstract][Full Text] [Related]
9. A robust parametric estimator for single-trial movement related brain potentials. Lange DH; Inbar GF IEEE Trans Biomed Eng; 1996 Apr; 43(4):341-7. PubMed ID: 8626183 [TBL] [Abstract][Full Text] [Related]
10. Real-time data-reusing adaptive learning of a radial basis function network for tracking evoked potentials. Qiu W; Chang C; Liu W; Poon PW; Hu Y; Lam FK; Hamernik RP; Wei G; Chan FH IEEE Trans Biomed Eng; 2006 Feb; 53(2):226-37. PubMed ID: 16485751 [TBL] [Abstract][Full Text] [Related]
11. Adaptive filtering of evoked potentials with radial-basis-function neural network prefilter. Qiu W; Fung KS; Chan FH; Lam FK; Poon PW; Hamernik RP IEEE Trans Biomed Eng; 2002 Mar; 49(3):225-32. PubMed ID: 11878313 [TBL] [Abstract][Full Text] [Related]
13. Bayesian nonstationary autoregressive models for biomedical signal analysis. Cassidy MJ; Penny WD IEEE Trans Biomed Eng; 2002 Oct; 49(10):1142-52. PubMed ID: 12374338 [TBL] [Abstract][Full Text] [Related]
14. Nonlinear system identification and overparameterization effects in multisensory evoked potential studies. Aljama Corrales T; Auñón JI IEEE Trans Biomed Eng; 2000 Apr; 47(4):472-86. PubMed ID: 10763293 [TBL] [Abstract][Full Text] [Related]
15. Change-point analysis of neuron spike train data. Bélisle P; Joseph L; MacGibbon B; Wolfson DB; du Berger R Biometrics; 1998 Mar; 54(1):113-23. PubMed ID: 9544510 [TBL] [Abstract][Full Text] [Related]
16. Latency change estimation for evoked potentials via frequency selective adaptive phase spectrum analyzer. Kong X; Qiu T IEEE Trans Biomed Eng; 1999 Aug; 46(8):1004-12. PubMed ID: 10431466 [TBL] [Abstract][Full Text] [Related]
17. Analysis of a stochastic neuronal model with excitatory inputs and state-dependent effects. Di Crescenzo A; Martinucci B Math Biosci; 2007 Oct; 209(2):547-63. PubMed ID: 17467746 [TBL] [Abstract][Full Text] [Related]
18. Estimating spiking irregularities under changing environments. Miura K; Okada M; Amari S Neural Comput; 2006 Oct; 18(10):2359-86. PubMed ID: 16907630 [TBL] [Abstract][Full Text] [Related]